Advanced Search
Volume 37 Issue 10
Sep.  2015
Turn off MathJax
Article Contents
Feng Xia, Hao Hui-min. Research on Automatic Generation of Test Data in MX Based on Genetic Algorithms[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2501-2507. doi: 10.11999/JEIT150291
Citation: Feng Xia, Hao Hui-min. Research on Automatic Generation of Test Data in MX Based on Genetic Algorithms[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2501-2507. doi: 10.11999/JEIT150291

Research on Automatic Generation of Test Data in MX Based on Genetic Algorithms

doi: 10.11999/JEIT150291
Funds:

The International Air Transport Association Fund (70003418)

  • Received Date: 2015-03-09
  • Rev Recd Date: 2015-06-15
  • Publish Date: 2015-10-19
  • Using genetic algorithms to generate test data automatically is becoming a hot topic in recent years, the method on effectively generating data is highly dependent on choosing the proper fitness function and the selecting standard. The genetic algorithm is used on Integrated Management X-software (IMX) system to help it improve the quality of regression test. Those basic test data used in this paper are taken from the data that generated by professional testers in IMX, and an initial population selecting standard is proposed based on the coverage. Experiments on IMX and triangle program show that the proposed algorithm is more effective than others, for example, with less time and iteration the method can find the testing data correctly, especially on data variety.
  • loading
  • Swain S and Mohapatra D P. Genetic Algorithm-Based Approach for Adequate Test Data Generation[M]. India: Intelligent Computing, Networking, and Informatics, Springer, 2014: 453-462.
    邝继顺, 刘杰镗, 张亮. 基于镜像对称参考切片的多扫描链测试数据压缩方法[J]. 电子与信息学报, 2015, 37(6): 1513-1519.
    Kuang Ji-shun, Liu Jie-tang, and Zhang Liang. Test data compression method for multiple scan chain based on mirror-symmetrical reference slices[J]. Journal of Electronics Information Technology, 2015, 37(6): 1513-1519.
    Michael C C, McGraw G E, Schatz M A, et al.. Genetic algorithms for dynamic test data generation[C]. Proceedings of the 12th IEEE International Conference on Automated Software Engineering, 1997: 307-308.
    张岩, 巩敦卫. 基于稀有数据扑捉的路径覆盖测试数据进化生成方法[J]. 计算机学报, 2013, 36(12): 2429-2440.
    Zhang Yan and Gong Dun-wei. Evolutionary generation of test data for paths coverage based on scarce data capturing[J]. Chinese Journal of Computers, 2013, 36(12): 2429-2440.
    刘向辉, 韩文报, 权建. 基于遗传策略的格基约化算法[J]. 电子与信息学报, 2013, 35(8): 1940-1945.
    Liu Xiang-hui, Han Wen-bao, and Quan Jian. A new lattice reduction algorithm based on genetic strategy[J]. Journal of Electronics Information Technology, 2013, 35(8): 1940-1945.
    Tian T and Gong D. Test data generation for path coverage of message-passing parallel programs based on co-evolutionary genetic algorithms[J]. Automated Software Engineering, 2014, 22(79): 1-32.
    严韬, 陈建文, 鲍拯. 基于改进遗传算法的天波超视距雷达二维阵列稀疏优化设计[J]. 电子与信息学报, 2014, 36(12): 3014-3020.
    Yan Tao, Chen Jian-wen, and Bao Zheng. Optimization design of sparse 2-D arrays for Over-The-Horizon Readar (OTHR) based on improved genetic algorithm[J]. Journal of Electronics Information Technology, 2014, 36(12): 3014-3020.
    巩敦卫, 任丽娜. 回归测试数据进化生成[J] . 计算机学报, 2014, 37(3): 489-499.
    Gong Dun-wei and Ren Li-na. Evolutionary genetation of regression test data[J]. Chinese Journal of Computers, 2014, 37(3): 489-499.
    曹凯, 陈国虎, 江桦, 等. 自适应引导进化遗传算法[J]. 电子与信息学报, 2014, 36(8): 1884-1890.
    Cao Kai, Chen Guo-hu, Jiang Hua, et al.. Guided self-adaptive evolutionary genetic algorithm[J]. Journal of Electronics Information Technology, 2014, 36(8): 1884-1890.
    徐宗本, 高勇. 遗传算法过早收敛现象的特征分析及其预防[J]. 中国科学: E 辑, 1996, 26(4): 364-375.
    Xu Zong-ben and Gao Yong. The analysis and prevention of genetic algorithm premature convergence[J]. Science in China (Series E), 1996, 26(4): 364-375.
    Suzuki J. A Markov chain analysis on simple genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25(4): 655-659.
    何大阔, 王福利, 贾明兴. 遗传算法初始种群与操作参数的均匀设计[J]. 东北大学学报: 自然科学版, 2005, 26(9): 828-831.
    He Da-kuo, Wang Fu-li, and Jia Ming-xing. Uniform design of initial population and operation parameters of genetic algorithm[J]. Journal of Northeastern University (Natural Science), 2005, 26(9): 828-831.
    Xuan J and Monperrus M. Test case purification for improving fault localization[C]. FSE 2014 Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, New York, NY, USA, 2014: 52-63.
    McMinn P. Evolutionary search for test data in the presence of state behaviour[D]. [Master dissertation], University of Sheffield, 2005: 1-242.
    Harman M and McMinn P. A theoretical and empirical study of search-based testing: local, global, and hybrid search[J]. IEEE Transactions on Software Engineering, 2010, 36(2): 226-247.
    Arcuri A. It does matter how you normalise the branch distance in search based software testing[C]. Proceedings of the 3rd International Conference on Software Testing, Verification and Validation, Pairs, France, 2010: 205-214.
    Xie X Y, Xu B W, Shi L, et al.. Genetic test case generation for path-oriented testing[J]. Journal of Software, 2009, 20(12): 3117-3136.
    雷英杰, 等. MATLAB 遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2005: 60-61.
    Lei Ying-jie, et al.. Application of Genetic Algorithm ToolBox Based on MATLAB[M]. Xian: Xidian University Publisher, 2005: 60-61.
    刘晓霞. 种群规模对遗传算法性能影响的研究[D]. [硕士论文], 华北电力大学, 2010: 1-37.
    Liu Xiao-xia. A research on population aize impaction on the performance of genetic algorithm[D]. [Master dissertation], North China Electric Power University, 2010: 1-37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1233) PDF downloads(426) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return