Advanced Search
Volume 37 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
Wang Tian-yun, Lu Xin-fei, Sun Lin, Chen Chang, Chen Wei-dong. An Autofocus Imaging Method for ISAR Based on Bayesian Compressive Sensing[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2719-2726. doi: 10.11999/JEIT150235
Citation: Wang Tian-yun, Lu Xin-fei, Sun Lin, Chen Chang, Chen Wei-dong. An Autofocus Imaging Method for ISAR Based on Bayesian Compressive Sensing[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2719-2726. doi: 10.11999/JEIT150235

An Autofocus Imaging Method for ISAR Based on Bayesian Compressive Sensing

doi: 10.11999/JEIT150235
Funds:

The National Natural Science Foundation of China (61172155, 61401140)

  • Received Date: 2015-02-11
  • Rev Recd Date: 2015-06-29
  • Publish Date: 2015-11-19
  • For Inverse Synthetic Aperture Radar (ISAR) autofocus imaging, this paper proposes a high-resolution imaging method based on Bayesian Compressed Sensing (BCS). Firstly, according to the sparsity characteristics of target image, a sparse model with the hierarchical framework is established, which can achieve better approximation to the original l0 norm. Then, the phase errors are assumed to obey the uniform distribution. Next, following the criterion of Maximum A Posteriori (MAP), target image and phase errors are solved using alternate iteration based on BCS theory. Compared with traditional methods, the proposed method further combines the joint sparse information of target image, and converts the ISAR CS imaging into solving a joint Multiple Measurement Vector (MMV) sparse optimization problem, which can improve both the autofocus precision and the imaging quality efficiently. Simulation results show the effectiveness of the proposed method.
  • loading
  • Brisken S and Martella M. Multistatic ISAR autofocus with an image entropy-based technique[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 30-36.
    L Jie-qin, Huang Lei, Shi Yun-mei, et al.. Inverse synthetic aperture radar imaging via modified smoothed l0 norm[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1235-1238.
    吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨 ISAR 成像算法[J]. 电子与信息学报, 2014, 36(1): 187-193.
    Wu Ming, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193.
    Odendaal J W, Barnard E, and Pistorius C W I. Two- dimensional superresolution radar imaging using the MUSIC algorithm[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(10): 1386-1391.
    Zhang Lei, Xing Meng-dao, Qiu Cheng-wei, et al.. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 567-571.
    Rao Wei, Li Gang, Wang Xi-qin, et al.. Adaptive sparse recovery by parametric weighted l1 minimization for ISAR imaging of uniformly rotating targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 942-952.
    成萍, 司锡才, 姜义成, 等. 基于稀疏贝叶斯学习的稀疏信号表示 ISAR 成像方法[J]. 电子学报, 2008, 36(3): 547-550.
    Cheng Ping, Si Xi-cai, Jiang Yi-cheng, et al.. Sparse signal representation ISAR imaging method based on sparse Bayesian learning[J]. Acta Electronica Sinica, 2008, 36(3): 547-550.
    Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013.
    Onhon N O and Cetin M. A sparsity-driven approach for joint SAR imaging and phase error correction[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2075-2088.
    徐刚, 包敏, 李亚超, 等. 基于贝叶斯估计的高精度ISAR成像[J]. 系统工程与电子技术, 2011, 33(11): 2382-2388.
    Xu Gang, Bao Min, Li Ya-chao, et al.. High precision ISAR imaging via Bayesian statistics[J]. Systems Engineering and Electronics, 2011, 33(11): 2382-2388.
    Wahl D E, Eichel P H, Ghiglia D C, et al.. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827-835.
    Li Xi, Liu Guo-sui, and Ni Jin-lin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240-1252.
    Tzagkarakis G, Achim A, Tsakalides P, et al.. Joint reconstruction of compressively sensed ultrasound RF echoes by exploiting temporal correlations[C]. Proceedings of the IEEE 10th International Symposium on Biomedical Imaging, San Francisco, 2013: 632-635.
    Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001(1): 211-244.
    Babacan S D, Molina R, and Katsaggelos A K. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63.
    Du Xiao-yong, Duan Chong-wen, and Hu Wei-dong. Sparse representation based autofocusing technique for ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1826-1835.
    Chen C C and Andrews H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2-14.
    Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. Superresolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1577) PDF downloads(664) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return