Advanced Search
Volume 37 Issue 9
Sep.  2015
Turn off MathJax
Article Contents
Peng Shu-yuan, Wang Qiu-shi, Zhang Zhao-chuan, Luo Ji-run. Effects of Distributed Loss Loading and Guiding Center Radius Modifying on Stability of Gyro-traveling Wave Tube[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2260-2264. doi: 10.11999/JEIT150192
Citation: Peng Shu-yuan, Wang Qiu-shi, Zhang Zhao-chuan, Luo Ji-run. Effects of Distributed Loss Loading and Guiding Center Radius Modifying on Stability of Gyro-traveling Wave Tube[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2260-2264. doi: 10.11999/JEIT150192

Effects of Distributed Loss Loading and Guiding Center Radius Modifying on Stability of Gyro-traveling Wave Tube

doi: 10.11999/JEIT150192
  • Received Date: 2015-02-03
  • Rev Recd Date: 2015-04-08
  • Publish Date: 2015-09-19
  • In this paper, the effect of distributed loss loading and guiding center radius modifying on the stability of a TE11 mode Gyro-Traveling Wave Tube (Gyro-TWT) is studied by multimode steady-state method. The result shows that the output power of the backward oscillation mode keeps weaken till zero as the conductance of the lossy material reduces, while the output power of the working mode grows significantly. As guiding center radius increases, loss loading needed to suppress oscillation completely is weaker, which makes heat easier to dissipate. Besides, the increment of guiding center radius also makes the output characteristic less sensitive to conductance variation.
  • loading
  • 刘盛纲. 相对论电子学[M]. 北京: 科学出版社, 1987: 1-2.
    Lau Y Y, Chu K R, Barnett L R, et al.. Gyrotron traveling wave amplifier1: analysis of oscillations[J]. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 373-392.
    Barnett L R, Chang L H, Chen H Y, et al.. Absolute instability competition and suppression in a mllimeter-wave gyrotron traveling wave tube[J]. Physical Review Letters, 1989, 63(10): 1062-1065.
    薛智浩, 刘濮鲲, 杜朝海, 等. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析[J]. 物理学报, 2014, 63(8): 080201.1-080201.8.
    Xue Zhi-hao, Liu Pu-kun, Du Chao-hai, et al.. Research on non-linear beam-wave interaction of W-band Gyro-TWT with helical waveguide[J]. Acta Physica Sinica, 2014, 63(8): 080201.1-080201.8.
    Tang Y, Luo Y, Xu Y, et al.. Self-consistent nonlinear analysis and 3D particle-In-cell simulation of a W-band gyro-TWT[J]. Journal of Infrared Millmeter and Terahz Waves, 2014, 35(10): 799-812.
    Wang J X, Luo Y, Xu Y, et al.. Numerical design and optimization of a curved collector for a Q-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2014, 61(1): 147-150.
    Denisov G G, Samsonov S V, Mishakin S V, et al. Microwave system for feeding and extracting power to and from a gyro-TWT through one window[J]. IEEE Electron Devices Letters, 2014. 35(7): 789-791.
    Wang J X, Luo Y, Xu Y, et al. Simulation and experiment of a Ku-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2013, 61(6): 1818-1823.
    Alaria M K, Choyal Y, and Sinha A K. Design of a Ka-band gyro-TWT amplifier for broadband operation[J]. Physics of Plasmas, 2013, 20(7): 073110.1-073110.6.
    Yan R, Tang Y, Luo Y, et al.. Design and experimental study of a high-gain W-band gyro-TWT with nonuniform periodic dielectric loaded waveguide[J]. IEEE Transactions on Plasma Science, 2014, 61(7): 2564-2569.
    Chu K R, Barnett L R, Chen H Y, et al.. Stabilization of absolute instabilities in the gyrotron traveling wave amplifier[J]. Physical Review Letters, 1995, 74(7): 1103-1106.
    Chu K R, Chen H Y, Hung C L, et al.. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier[J]. IEEE Transactions on Plasma Science, 1999, 27(2): 391-404.
    Wang Q S, McDermott D B, and Luhmann N C Jr. Operation of a stable 200-kw second-harmonic Gyro-TWT amplifier[J]. IEEE Transactions on Plasma Science, 1996, 24(3): 700-706.
    Sirigiri J R, Shapiro M A, Temkin R J, et al.. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier[J]. Physical Review Letters, 2003, 90(25): 258302.1-258302.4.
    Chu K R, Barnett L R, Chen H Y, et al.. Stabilization of absolute instabilities in the gyrotron traveling wave amplifier[J]. Physical Review Letters, 1995, 74(7): 1103-1106.
    McDermott D B, Song H H, Hirata Y, et al. Design of a W-Band TE01 mode gyrotron traveling-wave amplifier with high power and broad-band capabilities[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 894-902.
    Song H H, McDermott D B, Hirata Y, et al.. Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier[J]. Physics of Plasmas, 2004, 11(5): 2935-2941.
    彭澍源, 王秋实, 张兆传, 等. 回旋行波管多模稳态理论及初步应用[J]. 物理学报, 2014, 63(20): 208401.1-208401.9.
    Peng Shu-yuan, Wang Qiu-shi, Zhang Zhao-chuan, et al.. Multimode steady-state theory for Gyro-TWT and simulation of mode competition[J]. Acta Physica Sinica, 2014, 63(20): 208401.1-208401.9.
    焦重庆. 回旋行波放大器的相关理论研究与数值模拟[D]. [博士论文], 中国科学院研究生院, 2007.
    Jiao Chong-qing. Theoretical study and numerical simulation of the gyrotron traveling wave amplifier[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1561) PDF downloads(360) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return