Advanced Search
Volume 37 Issue 12
Jan.  2016
Turn off MathJax
Article Contents
Zhang Shi-hui, Han De-wei, He Huan. Determining Next Best View Using Occlusion and Contour Information of Visual Object[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2921-2928. doi: 10.11999/JEIT150190
Citation: Zhang Shi-hui, Han De-wei, He Huan. Determining Next Best View Using Occlusion and Contour Information of Visual Object[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2921-2928. doi: 10.11999/JEIT150190

Determining Next Best View Using Occlusion and Contour Information of Visual Object

doi: 10.11999/JEIT150190
Funds:

The National Natural Science Foundation of China (61379065)

  • Received Date: 2015-02-02
  • Rev Recd Date: 2015-08-19
  • Publish Date: 2015-12-19
  • Determining cameras next best view is a difficult issue in visual field. A next best view approach based on depth image of visual object is proposed by using occlusion and contour information in this paper. Firstly, the occlusion detection is accomplished for the depth image of visual object in current view. Secondly, the unknown regions are constructed according to the occlusion detection result of the depth image and the contour of the visual object, and then the unknown regions are modeled with triangulation-like. Thirdly, the midpoint, normal vector and area of each small triangle and other information are utilized to establish the objective function. Finally, the next best view is obtained by optimizing objective function. Experimental results demonstrate that the approach is feasible and effective.
  • loading
  • Bottino A and Laurentini A. What is next an interactive next best view approach[J]. Pattern Recognition, 2006, 39(1): 126-132.
    Pintilie G D and Stuerzlinger W. An evaluation of interactive and automated next best view methods in 3D scanning[J]. Computer-Aided Design and Applications, 2013, 10(2): 279-291.
    曾明勇, 吴泽民, 田畅, 等. 基于外观统计特征融合的人体目标再识别[J]. 电子与信息学报, 2014, 36(8): 1844-1851.
    Zeng Ming-yong, Wu Ze-min, Tian Chang, et al.. Fusing appearance statistical features for person re-identification[J]. Journal of Electronics Information Technology, 2014, 36(8): 1844-1851.
    李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166-2172.
    Li Lie-Chen and Li Dao-jing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(9): 2166-2172.
    Trummer M, Munkelt C, and Denzler J. Online next-best-view planning for accuracy optimization using an extended E-criterion[C]. Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010: 1642-1645.
    Haner S and Heyden A. Covariance propagation and next best view planning for 3D reconstruction[C]. Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 2012: 545-556.
    Connolly C. The determination of next best views[C]. Proceedings of the IEEE International Conference on Robotics and Automation, Missouri, USA, 1985: 432-435.
    Maver J and Bajcsy R. Occlusion as a guide for planning the next view[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(5): 417-432.
    Banta J E, Wong L M, Dumont C, et al.. A next-best-view system for autonomous 3-D object reconstruction[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2000, 30(5): 589-598.
    Li Y F and Liu Z G. Information entropy-based viewpoint planning for 3-D object reconstruction[J]. IEEE Transactions on Robotics, 2005, 21(3): 324-337.
    Vasquez-Gomez J I, Sucar L E, and Murrieta-Cid R. Hierarchical ray tracing for fast volumetric next-best-view planning[C]. Proceedings of the International Conference on Computer and Robot Vision, Regina, SK, Canada, 2013: 181-187.
    Potthast C and Sukhatme G. A probabilistic framework for next best view estimation in a cluttered environment[J]. Journal of Visual Communication and Image Representation, 2014, 25(1): 148-164.
    张世辉, 刘建新, 孔令富. 基于深度图像利用随机森林实现遮挡检测[J]. 光学学报, 2014, 34(9): 0915003: 1-12.
    Zhang Shi-hui, Liu Jian-xin, and Kong Ling-fu. Using random forest for occlusion detection based on depth image[J]. Acta Optica Sinica, 2014, 34(9): 0915003: 1-12.
    Curtis F and Overton M. A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization[J]. SIAM Journal on Optimization, 2012, 22(2): 474-500.
    Hetzel G, Leibe B, Levi P, et al.. 3D object recognition from range images using local feature histograms[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Piscataway, USA, 2001: II394-II399.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1288) PDF downloads(585) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return