Advanced Search
Volume 37 Issue 10
Sep.  2015
Turn off MathJax
Article Contents
Hou Zhi-qiang, Zhang Lang, Yu Wang-sheng, Xu Wan-jun. Local Patch Tracking Algorithm Based on Fast Fourier Transform[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2397-2404. doi: 10.11999/JEIT150183
Citation: Hou Zhi-qiang, Zhang Lang, Yu Wang-sheng, Xu Wan-jun. Local Patch Tracking Algorithm Based on Fast Fourier Transform[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2397-2404. doi: 10.11999/JEIT150183

Local Patch Tracking Algorithm Based on Fast Fourier Transform

doi: 10.11999/JEIT150183
Funds:

The National Natural Science Foundation of China (61175029, 61473309)

  • Received Date: 2015-02-02
  • Rev Recd Date: 2015-06-03
  • Publish Date: 2015-10-19
  • In order to solve the problems of appearance change, local occlusion and background distraction in the visual tracking, a local patch tracking algorithm based on Fast Fourier Transform(FFT)is proposed. The tracking precision can be improved by establishing objects patch kernel ridge regression model and using patch exhaustive search based on circular structure matrix, and the efficiency can be improved by transforming time domains operation into frequency domains based on FFT. Firstly, patch kernel ridge regression model is constructed according to the initialized tracking area. Secondly, a patch exhaustive search method based on circular structure matrix is proposed, then the position model is constructed in adjoining frame. Finally, the position of the object is estimated accurately using the position model and the local patch model is updated. Experimental results indicate that the proposed algorithm not only can obtain a distinct improvement in coping with appearance change, local occlusion and background distraction, but also have high tracking efficiency.
  • loading
  • Yang H X, Shao L, Zheng F, et al. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
    Smeulders A W, Chu D M, Cucchiara R, et al. Visual tracking :an experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468.
    Wu Y, Lim J, and Yang M H. Online object tracking: a benchmark[C]. Proceedings of the Computer Vision and Pattern Recognition, Portland, United States, 2013: 2411-2418.
    Comaniciu D and Ramesh V. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
    Collins R T. Mean-Shift blob tracking through scale space[C]. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Madison, United?States, 2003: 234-240.
    Ning J F, Zhang L, et al. Robust mean shift tracking with corrected background-weighted histogram[J]. IET Computer Vision, 2012, 6(1): 62-69.
    Babenko B, Yang M H, and Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
    Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]. Proceedings of European Conference on Computer Vision (ECCV), Florence,?Italy, 2012: 702-715.
    Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
    Adam A, Rivlin E, and Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Proceedings of the Computer Vision and Pattern Recognition, New York, United States, 2006: 798-805.
    董文会,常发亮,李天平.融合颜色直方图及SIFT特征的自适应分块目标跟踪方法[J].电子与信息学报,2013, 35(4): 770-776.
    Dong W H, Chang F L, and Li T P. Adaptive fragments-based target tracking method fusing color histogram and SIFT features[J]. Journal of Electronics Information Technology, 2013, 35(4): 770-776.
    Nejhum S, Ho J, and Yang M H. Online visual tracking with histograms and articulating blocks[J]. Computer Vision and Image Understanding, 2010, 114(8): 901-914.
    Yang F, Lu H C, and Chen Y W. Bag of feature tracking[C]. Proceedings of the International Conference on Pattern Recognition, Istanbul, Turkey, 2010: 153-156.
    Wang S, Lu H C, Yang F, et al. Superpixel tracking[C]. Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 1323-1330.
    Yang F, Lu H C, and Yang M H. Robust superpixel tracking[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1639-1651.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1429) PDF downloads(1914) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return