Advanced Search
Volume 37 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
Jiang Ming-feng, Liu Yuan, Xu Wen-long, Feng Jie, Wang Ya-ming. The Study of Compressed Sensing MR Image Reconstruction Algorithm Based on the Extension of Total Variation Method[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2608-2612. doi: 10.11999/JEIT150179
Citation: Jiang Ming-feng, Liu Yuan, Xu Wen-long, Feng Jie, Wang Ya-ming. The Study of Compressed Sensing MR Image Reconstruction Algorithm Based on the Extension of Total Variation Method[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2608-2612. doi: 10.11999/JEIT150179

The Study of Compressed Sensing MR Image Reconstruction Algorithm Based on the Extension of Total Variation Method

doi: 10.11999/JEIT150179
Funds:

The National Natural Science Foundation of China (61272311)

  • Received Date: 2015-02-02
  • Rev Recd Date: 2015-06-01
  • Publish Date: 2015-11-19
  • The Total Variation (TV) method is often used to reconstruct the Compressed Sensing Magnetic Resonance Imaging (CS-MRI), however, it can generate the stair effect in the reconstructed MR image. In this paper, there types of TV extension based methods, i.e. High Degree Total Variation (HDTV), Total Generalize Variation (TGV) and Group-Sparsity Total Variation (GSTV), are proposed to implement the sparse reconstruction of MR image. In addition, the shift-invariant discrete wavelet transform are integrated into these TV extension based methods as the sparsifying transform. The Fast Composite Splitting Algorithm (FCSA) is adopted to solve the convex optimization problem of CS-MRI reconstruction. And the Two different types of MR images with radial sampling trajectory are used to validate the reconstruction performance of CS-MRI by using the TV extension methods. The experiment results show that the TV extension based models can overcome the shortcomings of TV based model. Moreover, compared with HDTV and TGV methods, the GSTV method can obviously improve the reconstruction quality with higher Signal-to-Noise Ratio (SNR).
  • Cands E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    娄静涛, 李永乐, 谭树人, 等. 基于全变分的全向图像稀疏重构算法[J]. 电子学报, 2014, 44(2): 243-249.
    Lou Jing-tao, Li Yong-le, Tan Shu-ren, et al.. Sparse reconstruction for omnidirectional image based on total variation[J]. Acta Electronica Sinica, 2014, 44(2): 243-249.
    李然, 干宗良, 崔子冠, 等. 联合时空特征的视频分块压缩感知重构[J]. 电子与信息学报, 2014, 36(2): 285-292.
    Li Ran, Gan Zong-liang, Cui Zi-guan, et al.. Block compressed sensing reconstruction of video combined with temporal-spatial characteristics[J]. Journal of Electronics Information Technology, 2014, 36(2): 285-292.
    Lustig M, Donoho D L, and Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR Imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
    Hu Y and Jacob M. Higher Degree Total Variation (HDTV) regularization for image recovery[J]. IEEE Transactions on Image Processing, 2012, 21(5): 2559-2571.
    Guo W, Qin J, and Yin W. A new detail-preserving regularity scheme[J]. SIAM Journal on Imaging Sciences, 2014, 7(2): 1309-1334.
    Selesnick I W and Chen P. Total variation denoising with overlapping group sparsity[C]. IEEE International Conference Acoust, Speech, Signal Processing (ICASSP), Vancouver, Canada, 2013: 1-5.
    Zhang S, Block K T, and Frahm J. Magnetic resonance imaging in real time: advances using radial FLASH[J]. Journal of Magnetic Resonance Imaging, 2010, 31(1): 101-109.
    Huang J, Zhang S, and Metaxas D. Efficient MR image reconstruction for compressed MR imaging[J]. Medical Image Analysis, 2011, 15(5): 670-679.
    Ning B, Qu X, Guo D, et al.. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization[J]. Magnetic Resonance Imaging, 2013, 31(9): 1611-1622.
    Qu X, Hou Y, Lam F, et al.. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[J]. Medical Image Analysis, 2014, 18(6): 843-856.
    Jiang M , Jin J, Liu F, et al.. Sparsity-constrained SENSE reconstruction: an efficient implementation using a fast composite splitting algorithm[J]. Magnetic Resonance Imaging, 2013, 31(7): 1218-1227.
    Figueiredo M, Bioucas-Dias J, and Nowak R. Majorization minimization algorithms for wavelet-based image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2980-2991.
    He B, Liao L Z, Han D, et al.. A new inexact alternating directions method for monotone variational inequalities[J]. Mathematical Programming, 2002, 92(1): 103-118.
    Jung H, Ye J C, and Kim E Y. Improved k-t BLAST and k-t SENSE using FOCUSS[J]. Physics in Medicine and Biology, 2007, 52(11): 3201-3226.
  • Cited by

    Periodical cited type(5)

    1. 刘继忠,郑恩涛,贺艳涛,付珊珊,赵鹏. 一种分块图像的BP压缩感知重构算法. 新疆大学学报(自然科学版). 2018(03): 340-347 .
    2. 葛永新,林梦然,洪明坚. 联合局部和全局稀疏表示的磁共振图像重建方法. 重庆大学学报. 2017(01): 93-102 .
    3. 赵扬,汤敏. 基于不同全变差的医学图像压缩感知重构. 计算机工程与设计. 2017(09): 2443-2450+2463 .
    4. 王锋,孙桂玲,张健平,何静飞. 基于压缩感知的加速前向后向匹配追踪算法. 电子与信息学报. 2016(10): 2538-2545 . 本站查看
    5. 温海滨,毕笃彦,马时平,何林远. 消除阶梯效应与增强细节的变分Retinex红外图像增强算法. 光学学报. 2016(09): 130-139 .

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1688) PDF downloads(738) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return