Advanced Search
Volume 37 Issue 9
Sep.  2015
Turn off MathJax
Article Contents
Chen Yong, Fan Qiang, Shuai Feng. Sparse Image Fidelity Evaluation Based on Wavelet Analysis[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2055-2061. doi: 10.11999/JEIT150173
Citation: Chen Yong, Fan Qiang, Shuai Feng. Sparse Image Fidelity Evaluation Based on Wavelet Analysis[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2055-2061. doi: 10.11999/JEIT150173

Sparse Image Fidelity Evaluation Based on Wavelet Analysis

doi: 10.11999/JEIT150173
  • Received Date: 2015-01-30
  • Rev Recd Date: 2015-05-05
  • Publish Date: 2015-09-19
  • To overcome the limitations of traditional image quality assessment methods, which are not well consistent with subjective human evaluation, a quality assessment algorithm of Weighting Sparse Fidelity (WSF) based on wavelet analysis is proposed. The arithmetic simulates nerve network of Human Vision System (HVS) as research point, the image is decomposed with wavelet into four-sub band images, which are divided into blocks at size of , then using Fast Independent Component Analysis training (FastICA) method to train the image blocks. Then, each image block sparse character matrix is extracted to calculate the sparse feature fidelity of the image and build the sparse fidelity quality evaluation model. On this basis, the image is divided into a plurality of interval according to the different details of the visual image information and a visual weight is set in each section, which can be consistent with subjective human evaluation. The experiment results on LIVE database show that the proposed method has a good evaluation of all kinds of distortion types and is highly consistent with human subjective evaluations. The proposed algorithm can effectively simulate the weighted visual cortex of the human visual system perception mechanisms, which compensates for deficiencies of existing image quality assessment methods.
  • loading
  • 蒋刚毅, 黄大江, 王旭, 等. 图像质量评价方法研究进展[J]. 电子与信息学报, 2010, 32(1): 219-226.
    Jiang Gang-yi, Huang Da-jiang, Wang Xu, et al.. Overview on image quality assessment methods[J]. Journal of Electronics Information Technology, 2010, 32(1): 219-226.
    陈勇, 李愿, 吕霞付, 等. 视觉感知的彩色图像质量积极评价[J]. 光学精密工程, 2013, 21(3): 742-750.
    Chen Yong, Li Yuan, L Xia-fu, et al.. Active assessment of color image quality based on visual perception[J]. Optics and Precision Engineering, 2013, 21(3): 742-750.
    郭迎春, 于明, 朱秋明. 基于子带相似性分析的 JPEG2000 图像无参考质量评价[J]. 电子与信息学报, 2011, 33(6): 1496-1500.
    Guo Ying-chun, Yu Ming, and Zhu Qiu-ming. No reference image quality assessment based on subbands similarity and statistical analysis for JPEG2000[J]. Journal of Electronics Information Technology, 2011, 33(6): 1496-1500.
    Vu P V and Chandler D M. A fast wavelet-based algorithm for global and local image sharpness estimation[J]. IEEE Signal Processing Letters, 2012, 19(7): 423-426.
    Wang Z, Bovik A C, Sheikh H R, et al.. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    Sheikh H R and Bovik A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
    Li C and Bovik A C. Content-partitioned structural similarity index for image quality assessment[J]. Signal Processing: Image Communication, 2010, 25(7): 517-526.
    Zhang L, Zhang D, and Mou X. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
    李柯蒙, 邵枫, 蒋刚毅, 等. 基于稀疏表示的立体图像客观质量评价方法[J]. 光电子激光, 2014, 25(11): 2227-2233.
    Li Ke-meng, Shao Feng, Jiang Gang-yi, et al.. An objective quality assessment of stereoscopic image based on sparse representation[J]. Journal of OptoelectronicsLaser, 2014, 25(11): 2227-2233.
    Bell A J and Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995, 7(6): 1129-1159.
    Saad M A and Bovik A C. Natural motion statistics for no-reference video quality assessment[C]. IEEE International Workshop on Quality of Multimedia Experience, San Diego, CA, USA, 2009: 163-167.
    Chang H W, Yang H, Gan Y, et al.. Sparse feature fidelity for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2013, 22(10): 4007-4018.
    VQEG. Final report from the video quality experts group on the validation of objective models of video quality assessment [OL]. ftp://ftp.its.bldrdoc.gov/dist/ituvidq/Boulder_VQEG _jan_04/VQEG_PhaseII_FRTV_Final_Report_SG9060
    E.doc, 2003.
    Chandler D M and Hemami S S. VSNR: a wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298.
    Sheikh H R, Bovik A C, and De Veciana G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1523) PDF downloads(304) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return