Citation: | PANG Yeyong, WANG Shaojun, PENG Yu, PENG Xiyuan. A Kernel Adaptive Filter Vector Processor for Online Time Series Prediction[J]. Journal of Electronics & Information Technology, 2016, 38(1): 53-62. doi: 10.11999/JEIT150157 |
王中杰, 谢璐璐. 信息物理融合系统研究综述[J]. 自动化学报, 2011, 37(10): 1157-1166.
|
WANG Zhongjie and XIE Lulu. Cyber-physical system: a survey[J]. Acta Automatica Sinica, 2011, 37(10): 1157-1166.
|
周建宝, 王少军, 马丽萍, 等. 可重构卫星锂离子电池剩余寿命预测系统研究[J]. 仪器仪表学报, 2013, 34(9): 2034-2044.
|
ZHOU Jianbao, WANG Shaojun, MA Li-ping, et al. Study on the reconfigurable remaining useful life estimation system for satellite lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2013, 34(9): 2034-2044.
|
王少军. 时间序列预测的可重构计算研究[D]. [博士论文], 哈尔滨工业大学, 2012.
|
WANG Shaojun. Research on reconfigurable computing for time series forecasting[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2012.
|
曹葵康. 支持向量机加速方法及应用研究[D]. [博士论文], 浙江大学, 2010.
|
CAO Kuikang. Acceleration and application of support vector machines[D]. [Ph.D. dissertation], Zhejiang University, 2010.
|
江洁, 凌思睿. 一种投票式并行RANSAC算法及其FPGA实现[J]. 电子与信息学报, 2014, 36(5): 1145-1150. doi: 10.3724/ SP.J.1146.2013.00962.
|
JIANG Jie and LING Sirui. Parallel voting RANSAC and its implementation on FPGA[J]. Journal of Electronics Information Technology, 2014, 36(5): 1145-1150. doi: 10. 3724/SP.J.1146.2013.00962.
|
兰亚柱, 杨海钢, 林郁. 动态自适应低密度奇偶校验码译码器的FPGA实现[J]. 电子与信息学报, 2015, 37(8): 1937-1943. doi: 10.11999/JEIT141609.
|
LAN Yazhu, YANG Haigang, and LIN Yu. Design of dynamic adaptive LDPC decoder based on FPGA[J]. Journal of Electronics Information Technology, 2015, 37(8): 1937-1943. doi: 10.11999/JEIT141609.
|
PAPADONIKOLAKIS M. A scalable FPGA architecture for non-linear svm training[C]. Proceeding of 2008 International Conference on Field Programmable Technology, Taipei, China, 2008: 337-340.
|
ANGUITA D, CARLINO L, GHIO A, et al. A FPGA core generator for embedded classification systems[J]. Journal of Circuits, Systems and Computers, 2011, 20(2): 263-282.
|
MAJUMDAR A, CADAMBI S, BECCHI M, et al. A massively parallel, energy efficient programmable accelerator for learning and classification[J]. ACM Transactions on Architecture and Code Optimization, 2012, 9(1): 6:1-6:30.
|
KOZYRAKIS C and PATTERSON D. Vector vs. superscalar and vliw architectures for embedded multimedia benchmarks[C]. Proceeding of 35th Annual IEEE/ACM International Symposium on Microarchitecture, Califonia, USA, 2002: 283-293.
|
YIANNACOURAS P, STEFFAN J G, and ROSE J. Portable, flexible, and scalable soft vector processors[J]. IEEE Transactions on Very Large Scale Integration Systems, 2012, 20(8): 1429-1442.
|
YU J, EAGLESTON C, CHOU C H Y, et al. Vector processing as a soft processor accelerator[J]. ACM Transactions on Reconfigurable Technology and Systems, 2009, 2(2): 12:1-12:34.
|
VAN VAERENBERGH S, VIA J, and SANTAMARIA I. A sliding-window kernel RLS algorithm and its application to nonlinear channel identification[C]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006: 789-792.
|
PANG Yeyong, WANG Shaojun, PENG Yu, et al. A low latency kernel recursive least squares processor using FPGA technology[C]. 2013 International Conference on Field- Programmable Technology (FPT), Kyoto, Japan, 2013: 144-151.
|
VAN VAERENBERGH S, SANTAMARIA I, WEIFENG L, et al. Fixed- budget kernel recursive least-squares[C]. 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dalas, USA, 2010: 1882-1885.
|
RICHARD C, BERMUDEZ J C M, and HONEINE P. Online prediction of time series data with kernels[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 1058-1067.
|
KRUIF B J and VRIES T J A. Pruning error minimization in least squares support vector machines[J]. IEEE Transactions on Neural Networks, 2003, 14(3): 696-702.
|
LEONG P H W and LEUNG I K H. A microcoded elliptic curve processor using FPGA technology[J]. IEEE Transactions on VLSI Systems, 2002, 10(5): 550-559.
|
CHAU T C P, KUREK M, TARGETT J S, et al. SMCGen: Generating reconfigurable design for sequential Monte Carlo applications[C]. Proceeding of 22nd IEEE Symposium on
|
Field-Programmable Custom Computing Machines (FCCM), Boston, USA, 2014: 141-148.
|
VAN VAERENBERGH S and SANTAMARIA I. A comparative study of kernel adaptive filtering algorithms[C]. Proceedings of 2013 IEEE Digital Signal Processing and Signal Processing Education Meeting, California, USA, 2013: 181-186.
|