Advanced Search
Volume 37 Issue 10
Sep.  2015
Turn off MathJax
Article Contents
Xie Xian-zhong, Xie Cheng-jing, Lei Wei-jia, Zhan Mei-hui . Improved Transmit Design for Physical Layer Security in Cognitive Radio Networks with Multiple Eavesdropper Base on Semi-definite Programming[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2424-2430. doi: 10.11999/JEIT150111
Citation: Xie Xian-zhong, Xie Cheng-jing, Lei Wei-jia, Zhan Mei-hui . Improved Transmit Design for Physical Layer Security in Cognitive Radio Networks with Multiple Eavesdropper Base on Semi-definite Programming[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2424-2430. doi: 10.11999/JEIT150111

Improved Transmit Design for Physical Layer Security in Cognitive Radio Networks with Multiple Eavesdropper Base on Semi-definite Programming

doi: 10.11999/JEIT150111
Funds:

The National Natural Science Foundation of China (61271259, 61471076)

  • Received Date: 2015-01-21
  • Rev Recd Date: 2015-06-02
  • Publish Date: 2015-10-19
  • In the Cognitive Radio Network (CRN) with multiple multi-antenna eavesdroppers, to make the system security rate maximum, secure communication over the physical layer that is subjected to the interference power constraints at the Primary Users (PU) is provided by designing the transmit covariance optimization of Secondary User Transmitter (SU-Tx).When?the?Channel State?Information (CSI) is known, the properties of the matrices and Charnes-Cooper transformation are used, the non-convex function is converted to a Semi-Definite Programming (SDP) to get the optimization scheme of SU-Tx. Simulation results show that compared with the existing sub-optimal transmission designs, the proposed method improves the secrecy rate and has more advantages on the complexity.
  • loading
  • Simon H. Cognitive radio: brain-empowered wireless communication[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
    Shu Zhi-hui, Qian Yi, and Song Ci. On physical layer security for cognitive radio networks[J]. IEEE Network, 2013, 27(3): 28-33.
    Zhang Rui and Liang Ying-chang. Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks[J]. IEEE Journal of Selected Topics in Signal Process, 2008, 2(1): 88-102.
    Pei Yi-yang, Liang Ying-chang, Zhang Lan, et al.. Secure communication over MISO cognitive radio channel[J]. IEEE Transactions on Wireless Communications, 2010, 9(4): 1494-1502.
    Pei Yi-yang, Liang Ying-chang, Zhang Lan, et al.. Secure communication in multi-antenna cognitive radio networks with imperfect channel state information[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1683-1693.
    陈涛, 余华, 韦岗. 认知无线电网络的物理层安全研究及其鲁棒性设计[J]. 电子与信息学报, 2012, 34(4): 770-775.
    Chen Tao, Yu Hua, and Wei Gang. Study on the physical layer security of cognitive radio networks and its robustness design[J]. Journal of Electronics Information Technology, 2012, 34(4): 770-775.
    Wang Chao and Wang Hui-ming. On the secrecy throughput maximization for MISO cognitive radio network in slow fading channel[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(11): 1814-1827.
    Houjeij A, Saad W, and Basar T. A game-theoretic view on the physical layer security of cognitive radio networks[C]. Proceedings of IEEE International Conference on Communications (ICC), Budapest, 2013: 2095-2099.
    Zou Yu-long, Wang Xian-bin, and Shen Wei-ming. Physical-layer security with multiuser scheduling in cognitive radio network[J]. IEEE Transactions on Communications, 2013, 61(12): 5103-5113.
    Yang Nan, Yeoh P l, and Elkashlan M T. Transmit antenna selection for security enhancement in MIMO wiretap channel[J]. IEEE Transactions on Communications, 2013, 61(1): 144-154.
    Khisti A and Wornell G. Secure transmission with multiple antennas Part II: the MIMOME wiretap channel[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5515-5532.
    He Xiang and Yener A. MIMO wiretap channels with unknown and varying eavesdropper channel states[J]. IEEE Transactions on Information Theory, 2014, 60(11): 6844-6869.
    Liu T and Shamai (Shitz) S. A note on the secrecy capacity of the multiple-antenna wiretap channel[J]. IEEE Transactions on Information Theory, 2009, 55(6): 2547-2553.
    Khisti A and Wornell G W. Secure transmission with multiple antennas I: the MISOME wiretap channel[J]. IEEE Transactions on Information Theory, 2010, 56(7): 3088-3104.
    Shafiee S and Ulukus S. Achievable rates in Gaussian MISO channels with secrecy constraints[C]. Proceedings of IEEE International of Information Theory(ISIT), Nice, 2007: 2466-2470.
    Gerbracht S, Wolf A, and Jorswieck E A. Beamforming for fading_wiretap channels with partial channel information[C]. Proceedings of ITG Workshop on Smart Antennas (WSA), Bremen, 2010: 394-401.
    Liu Jia, Hou Y, and Sherali H D. Optimal power allocation for achieving perfect secrecy capacity in MIMO wire-tap channels[C]. Proceedings of Information Sciences and Systems, Baltimore, MD, 2009: 606-611.
    Zang Li, Trappe W, and Yates R. Secret communication via multi-antenna transmission[C]. IEEE 41st Annual Conference on Information Sciences and Systems(CISS2007), Baltimore, MD, 2007: 905-910.
    Schaefer R F and Boche H. Physical layer service integration in wireless network: signal processing challenges [J]. IEEE Signal Processing Magazine, 2013, 31(3): 147-156.
    Li J and Petropulu A P. Optimal input covariance for achieving secrecy capacity in Gaussian MIMO wiretap channels[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) Dallas, TX, 2010: 3362-3365.
    Boyd S and Vandenbeighe L. Convex Optimization [M]. UK: Cambridge University Press, 2004: 69-71, 168-169, 655.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1149) PDF downloads(462) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return