Advanced Search
Volume 37 Issue 9
Sep.  2015
Turn off MathJax
Article Contents
Guo Qiang, He You, Li Xin-de. Fast DSmT-DS Approximate Reasoning Method[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2040-2046. doi: 10.11999/JEIT150086
Citation: Guo Qiang, He You, Li Xin-de. Fast DSmT-DS Approximate Reasoning Method[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2040-2046. doi: 10.11999/JEIT150086

Fast DSmT-DS Approximate Reasoning Method

doi: 10.11999/JEIT150086
  • Received Date: 2015-01-15
  • Rev Recd Date: 2015-03-27
  • Publish Date: 2015-09-19
  • In this paper, Dempster-Shafer (DS) theory and Dezert-Smarandache Theory (DSmT) are conducted thorough reasearch, and in order to obtain more accurate fusion results in the premise of needing less computation complexity, a fast DSmT-DS approximate reasoning method is proposed. This method is only fit for the case that there are only singleton focal elements with assignments in hyper-power set. The hyper-power set is splitted and mapped to a new hyper-power set which consists of the binary sets of the focal element and its complementary set to the assignments of the complementary sets are computed. Proportional Conflict Redistribution No.5 within Dezert-Smarandache framework (DSmT+PCR5) is applied to fuse the multi-source evidence in the binary sets of the new hyper-power set to get the fusion results of singleton focal elements. Then the assignments of singleton focal elements are obtained by normalization. Through the theoretical analysis, the conclusion is drawn that the fusion results of the mothod in this paper is between the results of DSmT+PCR5 and Dempsters combination rule based on DS model, and the fusion results of the method in this paper which is better than the rusults of Dempsters combination rule can be obtained in the premise of minimal computation complexity. Finally, by comparing the method in this paper with the existing methods from different views, the superiority of new one is testified well.
  • loading
  • 史亚, 姬红兵, 朱明哲, 等. 多核融合框架下的雷达辐射源个体识别[J]. 电子与信息学报, 2014, 36(10): 2484-2490.
    Shi Ya, Ji Hong-bing, Zhu Ming-zhe, et al.. Specific radar emitter identification in multiple kernel fusion framework [J]. Journal of Electronics Information Technology, 2014, 36(10): 2484-2490.
    李程, 王伟, 施龙飞, 等. 基于多源信息融合的有源雷达组网方式序贯识别方法[J]. 电子与信息学报, 2014, 36(10): 2456-2463.
    Li Cheng, Wang Wei, Shi Long-fei, et al.. Sequential method for netting type recognition of active radars based on multi-source information fusion [J]. Jounal of Electronics Information Technology, 2014, 36(10): 2456-2463.
    杨露, 沈怀荣, 周伟静, 等. 基于信息融合的故障诊断集成平台设计与实现[J]. 系统仿真学报, 2014, 26(1): 132-136.
    Yang Lu, Shen Huai-rong, Zhou Wei-jing, et al.. Design and realization of fault diagnosis platform based on information fusion[J]. Journal of System Simulation, 2014, 26(1): 132-136.
    李嘉菲, 周斌, 刘大有, 等. 海量信息融合方法及其在状态评价中的应用[J]. 软件学报, 2014, 25(9): 2026-2036.
    Li Jia-fei, Zhou Bin, Liu Da-you, et al.. Massive information fusion algorithm and its application in status evaluation[J]. Journal of Software, 2014, 25(9): 2026-2036.
    Smarandache F and Dezert J. Advances and Applications of DSmT for Information Fusion: Vol 3[M]. USA: American Research Press, 2009: 54-58.
    Li X, Dezert J, Smarandache F, et al.. Combination of qualitative information with 2-Tuple Linguistic Representation in DSmT[J]. Journal of Computer Science and Technology, 2009, 24(4): 786-798.
    Li X, Dai X, Dezert J, et al.. Fusion of imprecise qualitative information[J]. Applied Intelligence, 2010, 33(3): 340-351.
    Li X, Huang X, Dezert J, et al.. A successful application of DSmT in sonar grid map building and comparison with DST-based approach[J]. International Journal of Innovative Computing, Information and Control, 2007, 3(3): 539-551.
    李新德, 黄心汉, 戴先中, 等. 基于DSmT融合机的移动机器人环境感知研究[J]. 华中科技大学学报, 2009, 37(12): 64-67.
    Li Xin-de, Huang Xin-han, Dai Xian-zhong, et al.. Study on environment perception of mobile robots using DSmT-based fusion machine[J]. Journal of Huazhong University of Science an Technology, 2009, 37(12): 64-67.
    辛玉林, 邹江威, 徐世友, 等. DSmT理论在综合敌我识别中的应用[J]. 系统工程与电子技术, 2010, 32(11): 2385-2388.
    Xin Yu-lin, Zou Jiang-wei, Xu Shi-you, et al.. Application of DSmT in integrated identification of friend-or-foe[J]. Systems Engineering and Electronics, 2010, 32(11): 2385-2388.
    覃东升, 苗壮, 王勇. 改进的DSmT算法及其在C4ISR系统中的应用[J]. 电子科技大学学报, 2014, 43(4): 592-595.
    Qin Dong-sheng, Miao Zhuang, and Wang Yong. Improved method based on DSmT and its application in C4ISR system[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(4): 592-595.
    李新德, 潘锦东, Jean D. 一种基于DSmT和HMM的序列飞机目标识别算法[J]. 自动化学报, 2014, 40(12): 2862-2876.
    Li Xin-de, Pan Jin-dong, and Jean D. A target recognition algorithm for sequential aircraft based on DSmT and HMM[J]. Acta Automatica Sinica, 2014, 40(12): 2862-2876.
    李新德, Jean D, 黄心汉, 等. 一种快速分层递阶DSmT 近似推理融合方法(A)[J]. 电子学报, 2010, 38(11): 2566-2572.
    Li Xin-de, Jean D, Huang Xin-han, et al.. A fast approximate reasoning method in hierarchical DSmT(A)[J]. Acta Electronica Sinica, 2010, 38(11): 2566-2572.
    李新德, 杨伟东, 吴雪建, 等. 一种快速分层递阶DSmT 近似推理融合方法(B)[J]. 电子学报, 2011, 39(3A): 31-36.
    Li Xin-de, Yang Wei-dong, Wu Xue-jian, et al.. A fast approximate reasoning method in hierarchical DSmT(B)[J]. Acta Electronica Sinica, 2011, 39(3A): 31-36.
    邓勇, 王栋, 李齐, 等. 一种新的证据冲突分析方法[J]. 控制理论与应用, 2011, 28(6): 839-844.
    Deng Yong, Wang Dong, Li Qi, et al.. A new method to analyze evidence conflict[J]. Control Theory Applications, 2011, 28(6): 839-844.
    蒋雯, 彭进业, 邓勇. 一种新的证据冲突表示方法[J]. 系统工程与电子技术, 2010, 32(3): 562-565.
    Jiang Wen, Peng Jin-ye, and Deng Yong. New representation method of evidential conflict[J]. Systems Engineering and Electronics, 2010, 32(3): 562-565.
    Li X, Jean D, Smarandache F, et al.. Evidence supporting measure of similarity for reducing the complexity in information fusion[J]. Information Sciences, 2011, 181(10): 1818-1835.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1471) PDF downloads(428) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return