Advanced Search
Volume 37 Issue 8
Aug.  2015
Turn off MathJax
Article Contents
Guo Qiang, He You. DSm Evidence Modeling and Radar Emitter Fusion Recognition Method Based on Cloud Model[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1779-1785. doi: 10.11999/JEIT150053
Citation: Guo Qiang, He You. DSm Evidence Modeling and Radar Emitter Fusion Recognition Method Based on Cloud Model[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1779-1785. doi: 10.11999/JEIT150053

DSm Evidence Modeling and Radar Emitter Fusion Recognition Method Based on Cloud Model

doi: 10.11999/JEIT150053
  • Received Date: 2015-01-09
  • Rev Recd Date: 2015-03-25
  • Publish Date: 2015-08-19
  • To improve the correct radar emitter recognition rate in cases that radar emitter characteristic parameters are overlapped with each other and existence of multiple modes, a DSm (Dezert-Smarandache) evidence modeling and radar emitter fusion recognition method based on cloud model is proposed. First, the radar emitter characteristic parameters which are overlapped and have multiple modes are modeled in DSm frame based on cloud model, then the degree of membership of unkonwn radar emitter signal belonging to prior radar types of each characteristic parameter is obtained by this model. Second, the basic belief assignments in DSm frame based on cloud model are obtained by the relationship between degree of membership and basic belief assignments. Thirdly, the basic belief assignments of the same characteristic parameters of multi-source unkown emitter signal are fused by DSmT+PCR5, then the fusion results of each characteristic parameters are fused to get the final recognition results. If there are only single-source unknown signal characteristic parameters, the basic belief assignments of each characteristic parameter are fused by DSmT+PCR5 to get the final recognition results. Finally, through the simulation experiments in multiple conditions, the superiority of the proposed method is testified well.
  • loading
  • 刘海军, 柳征, 姜文利, 等. 基于联合参数建模的雷达辐射源识别方法[J]. 宇航学报, 2011, 32(1): 142-149.
    Liu Hai-jun, Liu Zheng, Jiang Wen-li, et al.. A joint-parameter modeling based radar emitter identification method[J]. Journal of Astronautics, 2011, 32(1): 142-149.
    徐璟, 何明浩, 冒燕, 等. 基于优化算法的雷达辐射源信号识别方法及性能[J]. 现代雷达, 2014, 36(10): 33-37.
    Xu Jing, He Ming-hao, Mao Yan, et al.. Radar emitter recognition method based on optimization algorithm and performance[J]. Modern Radar, 2014, 36(10): 33-37.
    杨承志, 吴宏超, 贾苹, 等. 基于云模型和支持向量机的辐射源识别算法[J]. 现代雷达, 2013, 35(10): 41-44.
    Yang Cheng-zhi, Wu Hong-chao, Jia Ping, et al.. Approach based on cloud model and SVM for emitter identification[J]. Modern Radar, 2013, 35(10): 41-44.
    史亚, 姬红兵, 朱明哲, 等. 多核融合框架下的雷达辐射源个体识别[J]. 电子与信息学报, 2014, 36(10): 2484-2490.
    Shi Ya, Ji Hong-bing, Zhu Ming-zhe, et al.. Specific radar emitter identification in multiple kernel fusion framework [J]. Journal of Electronics Information Technology, 2014, 36(10): 2484-2490.
    刘凯, 王杰贵, 李俊武. 基于区间灰关联的雷达辐射源识别新方法[J]. 火力与指挥控制, 2013, 38(7): 20-23.
    Liu Kai, Wang Jie-gui, and Li Jun-wu. A new method based on interval grey association for radar emitter recognition[J]. Fire Control Command Control, 2013, 38(7): 20-23.
    关欣, 孙贵东, 郭强, 等. 基于区间数和证据理论的雷达辐射源参数识别[J]. 系统工程与电子技术, 2014, 36(7): 1269-1274.
    Guan Xin, Sun Gui-dong, Guo Qiang, et al.. Radar emitter parameter recognition based on interval number and evidence theory[J]. Systems Engineering and Electronics, 2014, 36(7): 1269-1274.
    徐志军, 陈志伟, 王金明, 等. 基于功放特性的辐射源识别的改进方法[J]. 南京邮电大学学报(自然科学版), 2013, 33(6): 54-58.
    Xu Zhi-jun, Chen Zhi-wei, Wang Jin-ming, et al.. An improved method for emitter identification based on character of power amplifier[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2013, 33(6): 54-58.
    公绪华, 袁振涛, 谭怀英. 基于GMM和神经网络的辐射源识别方法[J]. 雷达科学与技术, 2014, 12(5): 482-486.
    Gong Xu-hua, Yuan Zhen-tao, and Tan Huai-ying. The methods based on the GMM and neural network for recognition of emitters[J]. Radar Science and Technology, 2014, 12(5): 482-486.
    刘海军, 柳征, 姜文利, 等. 一种基于云模型的辐射源识别方法[J]. 电子与信息学报, 2009, 31(9): 2079-2083.
    Liu Hai-jun, Liu Zheng, Jiang Wen-li, et al.. A method for emitter recognition based on cloud model[J]. Journal of Electronics Information Technology, 2009, 31(9): 2079-2083.
    付耀文, 杨威, 庄钊文. 证据建模研究综述[J]. 系统工程与电子技术, 2013, 35(6): 1160-1167.
    Fu Yao-wen, Yang Wei, and Zhuang Zhao-wen. Review on evidence modeling[J]. Systems Engineering and Electronics, 2013, 35(6): 1160-1167.
    Smarandache F and Dezert J. Advances and Applications of DSmT for Information Fusion[M]. Vol. 3, Rehoboth, USA: American Research Press, 2009: 54-58.
    Wang Guo-yin, Xu Chang-lin, and Li De-yi. Generic normal cloud model[J]. Information Sciences, 2014, 280: 1-15.
    秦丽, 李兵. 一种基于云模型的不确定性数据的建模与分类方法[J]. 计算机科学, 2014, 41(8): 233-240.
    Qin Li and Li Bing. Novel method of uncertain data modeling and classification based on cloud model[J]. Computer Science, 2014, 41(8): 233-240.
    徐晓滨, 文成林, 刘荣利. 基于随机集理论的多源信息统一表示与建模方法[J]. 电子学报, 2008, 36(6): 1174-1181.
    Xu Xiao-bin, Wen Cheng-lin, and Liu Rong-li. The unified method of describing and modeling multisource information based on random set theory[J]. Acta Electronica Sinica, 2008, 36(6): 1174-1181.
    彭冬亮, 文成林, 徐晓滨, 等. 随机集理论及其在信息融合中的应用[J]. 电子与信息学报, 2006, 28(11): 2199-2204.
    Peng Dong-liang, Wen Cheng-lin, Xu Xiao-bin, et al.. Random set and its application[J]. Journal of Electronics Information Technology, 2006, 28(11): 2199-2204.
    李新德, 杨伟东, 吴雪建, 等. 一种快速分层递阶DSmT 近似推理融合方法(B)[J]. 电子学报, 2011, 3(s1): 31-36.
    Li Xin-de, Yang Wei-dong, Wu Xue-jian, et al.. A fast approximate reasoning method in hierarchical DSmT(B)[J]. Acta Electronica Sinica, 2011, 3(s1): 31-36.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1408) PDF downloads(796) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return