Advanced Search
Volume 37 Issue 9
Sep.  2015
Turn off MathJax
Article Contents
Li Huan-yu, Bi Du-yan, Yang Yuan, Zha Yu-fei, Qin Bing, Zhang Li-chao. Research on Visual Tracking Algorithm Based on Deep Feature Expression and Learning[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031
Citation: Li Huan-yu, Bi Du-yan, Yang Yuan, Zha Yu-fei, Qin Bing, Zhang Li-chao. Research on Visual Tracking Algorithm Based on Deep Feature Expression and Learning[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031

Research on Visual Tracking Algorithm Based on Deep Feature Expression and Learning

doi: 10.11999/JEIT150031
  • Received Date: 2015-01-06
  • Rev Recd Date: 2015-04-28
  • Publish Date: 2015-09-19
  • For the robustness of visual object tracking, a new tracking algorithm based on multi-stage convolution filtering feature is proposed by introducing deep learning into visual tracking. The algorithm uses the Principal Component Analysis (PCA) eigenvectors obtained by stratified learning, to extract the deeper abstract expression of the original image by multi-stage convolutional filtering. Then the Bhattacharyya distance is used to evaluate the similarity among features. Finally, particle filter algorithm is combined to realize target tracking. The result shows that the feature obtained by multi-stage convolution filtering can express target better, the proposed algorithm has a better inflexibility to illumination, covering, rotation, and camera shake, and it exhibits very good robustness in video sequence with such characteristics.
  • loading
  • Li X, Hu W M, and Shen C H. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 5801-5848.
    Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
    Clement F, Camille C, Laurent N, et al.. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915-1929.
    Alex K, Sutskever I, and Hinton G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, 2012: 748-764.
    Zhou S S, Chen Q C, and Wang X L. Convolutional deep networks for visual data classification[J]. Neural Processing Letters, 2013, 38(11): 17-27.
    Abdel-Hamid O, Mohamed A R, Jiang H, et al.. Convolutional neural networks for speech recognition[J]. ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545.
    Chen X Y, Xiang S M, and Li C L. Vehicle detection in satellite images by hybrid deep convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2014, 11(10): 1797-1801.
    Evgeny A S, Denis M T, and Serge N A. Comparison of regularization methods for imagenet classification with deep convolutional neural networks[J]. AASRI Procedia, 2014, 6(8): 89-94.
    Baldi P and Hornik K. Neural networks and principal component analysis: learning from examples without local minima[J]. Neural Networks, 1989, 2(1): 53-58.
    Ross D, Lim Jong-woo, and Lin Ruei-Sung. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125-141.
    姚志均. 一种新的空间直方图相似性度量方法及其在目标跟踪中的应用[J]. 电子与信息学报, 2013, 35(7): 1644-1649.
    Yao Z J. A new spatiogram similarity measure method and its application to object tracking[J]. Journal of Electronics Information Technology, 2013, 35(7): 1644-1649.
    Zhang K H, Zhang L, and Yang M H. Real-time compressive tracking[C]. Proceedings of Europe Conference on Computer Vision, Florence, 2012: 864-877.
    Sevilla-Lara L and Learned-Miller E. Distribution fields for tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1910-1917.
    Shaul O, Aharon B H, and Dan L. Locally orderless tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1940-1947.
    Henriques J F, Caseiro R, and Martins P. High-speed tracking with kernelized correlation filters[J]. IEEE
    Transactions on Pattern Analysis and Machine Intelligence, 2015, DOI: 10.1109/TPAMI.2014.2345390.
    Hare S, Saffari A, and Torr P H S. Struck:structured output tracking with kernels[C]. Proceedings of IEEE International Conference on Computer Vision, Colorado, 2011: 263-270.
    Thang Ba Dinh, Nam Vo, and Medioni G. Context tracker: exploring supporters and distracters in unconstrained environments[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1177-1184.
    Liu Bai-yang, Huang Jun-zhou, and Yang Lin. Robust tracking using local sparse appearance model and K-selection [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1313-1320.
    Junseok K and Kyoung M. Tracking by sampling trackers[C]. Proceedings of IEEE International Conference on Computer Vision, Colorado, 2011: 1195-1202.
    Amit Adam, Ehud Rivlin, and Ilan Shimshoni. Robust fragments-based tracking using the integral histogram[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2006: 798-805.
    Dorin Comaniciu, Visvanathan Ramesh, and Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2190) PDF downloads(2032) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return