Advanced Search
Volume 37 Issue 9
Sep.  2015
Turn off MathJax
Article Contents
Fan Xiao-shi, Lei Ying-jie, Wang Ya-nan, Guo Xin-peng. Intuitionistic Fuzzy Reasoning Method in Traffic Anomaly Detection[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2218-2224. doi: 10.11999/JEIT150023
Citation: Fan Xiao-shi, Lei Ying-jie, Wang Ya-nan, Guo Xin-peng. Intuitionistic Fuzzy Reasoning Method in Traffic Anomaly Detection[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2218-2224. doi: 10.11999/JEIT150023

Intuitionistic Fuzzy Reasoning Method in Traffic Anomaly Detection

doi: 10.11999/JEIT150023
  • Received Date: 2015-01-06
  • Rev Recd Date: 2015-03-18
  • Publish Date: 2015-09-19
  • Aiming at the characteristics of uncertainty and fuzziness of the network traffic attribute, an Intuitionistic Fuzzy Reasoning Theory (IFRT) is introduced to the anomaly detection field. A method of IFRT detection based on the inclusion degree is proposed. Firstly, the membership and non-membership functions of attributes in anomaly detection are designed. Secondly, the intensity similarity measure method based on the inclusion degree is presented and the rules library is generated. And then, the FMP rules of the IFRT are presented. Finally, an anomaly detection based on the IFRT is constructed. The validity is checked by experiment on the standard detection dataset KDD99, compared with other traditional theory, the IFRT anomaly detection method performs better than others.
  • loading
  • Dimitris K and Elpiniki I. Intuitionistic fuzzy reasoning with cognitive maps[C]. Proceedings of the IEEE International Conference on Fuzzy Systems, Taipei, China, 2011: 821-827.
    Chen Cheng-hung. Compensatory neural fuzzy networks with rule-based cooperative differential evolution for nonlinear system control[J]. Nonlinear Dynamics, 2014, 75(1): 355-366.
    Lei Yang, Lei Ying-jie, and Kong Wei-wei. Technique for target recognition based on intuitionistic fuzzy reasoning[J]. IET Signal Processing, 2012, 6(3): 255-263.
    Mitchell H B. Pattern recognition using type-II fuzzy sets[J]. Information Sciences, 2005, 170(2/4): 409-418.
    Hong Peng, Jun Wang, Mario J P J, et al.. Fuzzy reasoning spiking neural P system for fault diagnosis[J]. Information Sciences, 2013, 235: 106-116.
    Luigi L and Larbi B. Using multiple uncertain examples and adaptative fuzzy reasoning to optimize image characterization[J]. Knowledge Based System, 2007, 20(3): 266-276.
    雷英杰, 王宝树, 王毅. 基于直觉模糊推理的威胁评估方法[J].电子与信息学报, 2007, 29(9): 2077-2081.
    Lei Ying-jie, Wang Bao-shu, and Wang Yi. Techniques for threat assessment based on intuitionistic fuzzy reasoning[J]. Journal of Electronics Information Technology, 2007, 29(9): 2077-2081.
    雷英杰, 王宝树, 王毅. 基于直觉模糊决策的战场态势评估方法[J]. 电子学报, 2006, 34(12): 1275-1279.
    Lei Ying-jie, Wang Bao-shu, and Wang Yi. Techniques for battlefield situation assessment based on intuitionistic fuzzy decision[J]. Acta Electronica Sinica, 2006, 34(12): 1275-1279.
    Hwang C M, Yang M S, Hung W L, et al.. A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition[J]. Infor-
    mation Sciences, 2012, 189: 93-109.
    Boran F E and Akay D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition[J]. Information Sciences, 2014, 255: 45-57.
    王毅, 刘三阳, 张文, 等. 基于包含度的直觉模糊相似度量推理方法[J]. 系统工程与电子技术, 2014, 36(3): 497-500.
    Wang Yi, Liu San-yang, Zhang Wen, et al.. Intuitionistic fuzzy similarity measures reasoning method based on inclusion degrees[J]. Systems Engineering and Electronics, 2014, 36(3): 497-500.
    严宣辉. 应用疫苗接种策略的免疫入侵检测模型[J]. 电子学报, 2009, 37(4): 780-785.
    Yan Xuan-hui. An artificial immune-based intrusion detection model using vaccination strategy[J]. Acta Electronica Sinica, 2009, 37(4): 780-785.
    Kuang F J ,Xu W H, and Zhang S Y. A novel hybrid KPCA and SVM with GA model for intrusion detection[J]. Applied Soft Computing, 2014, 18(5): 178-184.
    Abadeh M S, Mohamadi H, and Habibi J. Design and analysis of genetic fuzzy systems for intrusion detection in computer networks[J]. Expert Systems with Applications, 2011, 38(6): 7067-7075.
    Karami A and Zapata M G. A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks[J]. Neurocomputing, 2014, 149(3): 1253-1269.
    Guo S Q, Gao C, Yao J, et al. An intrusion detection model based on improved random forests algorithm[J]. Journal of Software, 2005, 16(8): 1490-1498.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1559) PDF downloads(611) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return