Advanced Search
Volume 37 Issue 9
Sep.  2015
Turn off MathJax
Article Contents
Qin Hong-xing, Sun Ying. Approach of Skeleton Pruning with Bayesian Model[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2069-2075. doi: 10.11999/JEIT150003
Citation: Qin Hong-xing, Sun Ying. Approach of Skeleton Pruning with Bayesian Model[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2069-2075. doi: 10.11999/JEIT150003

Approach of Skeleton Pruning with Bayesian Model

doi: 10.11999/JEIT150003
  • Received Date: 2015-01-05
  • Rev Recd Date: 2015-05-13
  • Publish Date: 2015-09-19
  • Considering the problem that most of the existing skeleton calculation methods exhibit extreme sensitivity to the shape noise, a Bayes based algorithm for the skeleton pruning is proposed . The algorithm models the skeleton and growth process with Bayesian statistics framework. Based on the model, an iterative optimization is performed to prune the candidate branches. Due to the fact that the existing reconstruction error can not evaluate the simplicity of skeletons well, a new concept called Effective Rate is proposed to make quantitative analysis on the pruned skeleton with taking the simplicity into consideration. The experiments show that the proposed algorithm is robust to the shape noise and acts better in simplifying the skeleton structure and representing shape accurately.
  • loading
  • Gong Y, Lazebnik S, Gordo A, et al.. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916-2929.
    Kim V G, Chaudhuri S, Guibas L, et al.. Shape2pose: Human-centric shape analysis[J]. ACM Transactions on Graphics (TOG), 2014, 33(4): 70-79.
    Huang S S, Shamir A, Shen C H, et al.. Qualitative organization of collections of shapes via quartet analysis[J]. ACM Transactions on Graphics (TOG), 2013, 32(4): 96-96.
    Blum H. Biological shape and visual science (Part I)[J]. Journal of Theoretical Biology, 1973, 38(2): 205-287.
    Xu J. A generalized morphological skeleton transform using both internal and external skeleton points[J]. Pattern Recognition, 2014, 47(8): 2607-2620.
    Song Z, Yu J, Zhou C, et al.. Skeleton correspondence construction and its applications in animation style reusing[J]. Neurocomputing, 2013, 120(10): 461-468.
    Al Nasr K, Liu C, Rwebangira M, et al.. Intensity-based skeletonization of cryoEM gray-scale images using a true segmentation-free algorithm[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2013, 10(5): 1289-1298.
    Mayya N and Rajan V T. Voronoi diagrams of polygons: A framework for shape representation[J]. Journal of Mathematical Imaging and Vision, 1996, 6(4): 355-378.
    Daz-Pernil D, Pea-Cantillana F, and Gutirrez-Naranjo M A. Cellular Automata in Image Processing and Geometry[M]. Berlin: Springer International Publishing, 2014: 47-63.
    Choi W P, Lam K M, and Siu W C. Extraction of the Euclidean skeleton based on a connectivity criterion[J]. Pattern Recognition, 2003, 36(3): 721-729.
    Sobiecki A, Yasan H C, Jalba A C, et al.. Mathematical Morphology and Its Applications to Signal and Image Processing[M]. Berlin: Springer International Publishing, 2013: 425-439.
    Babu G R M, Srikrishna A, Challa K, et al.. An error free compression algorithm using morphological decomposition[C]. 2012 International Conference on Recent Advances in Computing and Software Systems (RACSS), Chennai, 2012: 33-36.
    Karimipour F and Ghandehari M. Transactions on Computational Science XX[M]. Berlin: Springer International Publishing, 2013: 138-157.
    Jalba A C, Kustra J, and Telea A C. Surface and curve skeletonization of large 3D models on the GPU[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1495-1508.
    Karimov A, Mistelbauer G, Schmidt J, et al.. ViviSection: skeleton-based volume editing[C]. Computer Graphics Forum, Leipzig, 2013, 32(3pt4): 461-470.
    Cicconet M, Geiger D, Gunsalus K C, et al.. Mirror symmetry histograms for capturing geometric properties in images[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 2014: 2981-2986.
    Mokhtarian F and Mackworth A K. A theory of multiscale, curvature-based shape representation for planar curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(8): 789-805.
    Ogniewicz R L and Kbler O. Hierarchic voronoi skeletons[J]. Pattern Recognition, 1995, 28(3): 343-359.
    Couprie M, Coeurjolly D, and Zrour R. Discrete bisector function and Euclidean skeleton in 2D and 3D[J]. Image and Vision Computing, 2007, 25(10): 1543-1556.
    Bai X, Latecki L J, and Liu W Y. Skeleton pruning by contour partitioning with discrete curve evolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 449-462.
    Sebastian T B, Klein P N, and Kimia B B. Recognition of shapes by editing their shock graphs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 550-571.
    Shen W, Bai X, Yang X W, et al.. Skeleton pruning as trade-off between skeleton simplicity and reconstruction error[J]. Science China Information Sciences, 2013, 56(4): 1-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1135) PDF downloads(749) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return