Citation: | Qin Hong-xing, Sun Ying. Approach of Skeleton Pruning with Bayesian Model[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2069-2075. doi: 10.11999/JEIT150003 |
Gong Y, Lazebnik S, Gordo A, et al.. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916-2929.
|
Kim V G, Chaudhuri S, Guibas L, et al.. Shape2pose: Human-centric shape analysis[J]. ACM Transactions on Graphics (TOG), 2014, 33(4): 70-79.
|
Huang S S, Shamir A, Shen C H, et al.. Qualitative organization of collections of shapes via quartet analysis[J]. ACM Transactions on Graphics (TOG), 2013, 32(4): 96-96.
|
Blum H. Biological shape and visual science (Part I)[J]. Journal of Theoretical Biology, 1973, 38(2): 205-287.
|
Xu J. A generalized morphological skeleton transform using both internal and external skeleton points[J]. Pattern Recognition, 2014, 47(8): 2607-2620.
|
Song Z, Yu J, Zhou C, et al.. Skeleton correspondence construction and its applications in animation style reusing[J]. Neurocomputing, 2013, 120(10): 461-468.
|
Al Nasr K, Liu C, Rwebangira M, et al.. Intensity-based skeletonization of cryoEM gray-scale images using a true segmentation-free algorithm[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2013, 10(5): 1289-1298.
|
Mayya N and Rajan V T. Voronoi diagrams of polygons: A framework for shape representation[J]. Journal of Mathematical Imaging and Vision, 1996, 6(4): 355-378.
|
Daz-Pernil D, Pea-Cantillana F, and Gutirrez-Naranjo M A. Cellular Automata in Image Processing and Geometry[M]. Berlin: Springer International Publishing, 2014: 47-63.
|
Choi W P, Lam K M, and Siu W C. Extraction of the Euclidean skeleton based on a connectivity criterion[J]. Pattern Recognition, 2003, 36(3): 721-729.
|
Sobiecki A, Yasan H C, Jalba A C, et al.. Mathematical Morphology and Its Applications to Signal and Image Processing[M]. Berlin: Springer International Publishing, 2013: 425-439.
|
Babu G R M, Srikrishna A, Challa K, et al.. An error free compression algorithm using morphological decomposition[C]. 2012 International Conference on Recent Advances in Computing and Software Systems (RACSS), Chennai, 2012: 33-36.
|
Karimipour F and Ghandehari M. Transactions on Computational Science XX[M]. Berlin: Springer International Publishing, 2013: 138-157.
|
Jalba A C, Kustra J, and Telea A C. Surface and curve skeletonization of large 3D models on the GPU[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1495-1508.
|
Karimov A, Mistelbauer G, Schmidt J, et al.. ViviSection: skeleton-based volume editing[C]. Computer Graphics Forum, Leipzig, 2013, 32(3pt4): 461-470.
|
Cicconet M, Geiger D, Gunsalus K C, et al.. Mirror symmetry histograms for capturing geometric properties in images[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 2014: 2981-2986.
|
Mokhtarian F and Mackworth A K. A theory of multiscale, curvature-based shape representation for planar curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(8): 789-805.
|
Ogniewicz R L and Kbler O. Hierarchic voronoi skeletons[J]. Pattern Recognition, 1995, 28(3): 343-359.
|
Couprie M, Coeurjolly D, and Zrour R. Discrete bisector function and Euclidean skeleton in 2D and 3D[J]. Image and Vision Computing, 2007, 25(10): 1543-1556.
|
Bai X, Latecki L J, and Liu W Y. Skeleton pruning by contour partitioning with discrete curve evolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 449-462.
|
Sebastian T B, Klein P N, and Kimia B B. Recognition of shapes by editing their shock graphs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 550-571.
|
Shen W, Bai X, Yang X W, et al.. Skeleton pruning as trade-off between skeleton simplicity and reconstruction error[J]. Science China Information Sciences, 2013, 56(4): 1-14.
|