Advanced Search
Volume 37 Issue 9
Sep.  2015
Turn off MathJax
Article Contents
Zhang Zhi-long, Yang Wei-ping, Zhang Yan, Li Ji-cheng. Ship Detection in Infrared Remote Sensing Images Based on Spectral Residual Transform[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2144-2150. doi: 10.11999/JEIT141659
Citation: Zhang Zhi-long, Yang Wei-ping, Zhang Yan, Li Ji-cheng. Ship Detection in Infrared Remote Sensing Images Based on Spectral Residual Transform[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2144-2150. doi: 10.11999/JEIT141659

Ship Detection in Infrared Remote Sensing Images Based on Spectral Residual Transform

doi: 10.11999/JEIT141659
  • Received Date: 2014-12-16
  • Rev Recd Date: 2015-05-18
  • Publish Date: 2015-09-19
  • A ship detection algorithm based on spectral residual transform is presented to detect ship in infrared remote sensing images. Firstly, the model parameters of spectral residual transform are designed according to the prior knowledge of ship and its natural backgrounds. Secondly, the spectral residual transform of sea infrared image is implemented. Thirdly, ship detection is done on the spectral residual transform image. Experimental results reveal that the new detection algorithm can remove large scale image interference and the image noise and improve the SCR of ship image. The detecting probability of the new algorithm is higher than other conventional methods.
  • loading
  • Cheng Gong, Han Jun-wei, Guo Lei, et al.. Object detection in remote sensing imagery using a discriminatively trained mixture model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, (85): 32-43.
    Cheng Gong, Han Jun-wei, Zhou Pei-cheng, et al.. Multi- class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, (98): 119-132.
    Han Jun-wei, Zhou Pei-cheng, Zhang Ding-wen, et al.. Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, (89): 37-48.
    An Zhen-yu, Shi Zhen-wei, Teng Xichao, et al.. An automated airplane detection system for large panchromaticimage with high spatial resolution[J]. Optik- International Journal for Light and Electron Optics, 2014, 125(12): 2768-2775.
    Zhang Wan-ceng, Sun Xian, Wang Hong-qi, et al.. A generic discriminative part-based model for geospatial object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99(1): 30-44.
    张亮. SAR 图像舰船目标检测方法研究[D]. [硕士论文], 国防科学技术大学, 2007.
    Zhang Liang. Detection of ship in SAR image[D]. [Master dissertation], National University of Defense Technology, 2007.
    陈海亮. 基于特征的光学遥感图像舰船目标检测技术研究[D]. [硕士论文], 国防科学技术大学, 2010.
    Chen Hai-liang. Feature based method for ship detection in optical remote sensing image[D]. [Master dissertation], Graduate School of National University of Defense Technology, 2010.
    Hou X and Zhang L. Saliency detection: a spectral residual approach[C]. Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007), Minneapolis, Minnesota, USA, 2007: 1-8.
    Harel J, Koch C, and Perona P. Graph-based visual saliency[C]. Proceedings of the 20th Neural Information Processing Systems (NIPS 2006), Vancouver, British Columbia, Canada, 2006: 545-552.
    Achanta R, Estrada F, Wils P, et al.. Salient region detection and segmentation[C]. Proceedings of the 6th International Conference on Computer Vision Systems (ICVS 2008), Santorini, Greece, 2008: 66-75.
    Achanta R, Hemami S, Estrada F, et al.. Frequency-tuned salient region detection[C]. Proceedings of the 2009 Computer Vision and Pattern Recognition, 2009(CVPR 2009), Miami, Florida, USA, 2009: 1597-1604.
    Itti L, Koch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    许军毅, 计科峰, 雷琳, 等. 基于GLRT的光学卫星遥感图像舰船目标检测[J]. 遥感技术与应用, 2012, 27(4): 616-622.
    Xu Jun-yi, Ji Ke-feng, Lei Lin, et al.. Ship target detection from optical satellite remote sensing image based on GLRT [J]. Remote Sensing Technology and Application, 2012, 27(4): 616-622.
    Smith M E and Varshney P K. Intelligent CFAR processor based on data variability[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 837-847.
    Farrouki A and Barkat M. Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(1): 43-51.
    Harm G. Developments in detection algorithms at JRC[C]. The Third Meeting of the DECLIMS Project, Vancouver, BC, 2004: 1-7.
    唐沐恩, 林挺强, 文贡坚. 遥感图像中舰船检测方法综述[J].计算机应用研究, 2011, 28(1): 29-36.
    Tang Mu-en, Lin Ting-qiang, and Wen Gong-jian. Overview of ship detection methods in remote sensing image[J]. Application Research of Computers, 2011, 28(1): 29-36.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1547) PDF downloads(670) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return