Advanced Search
Volume 37 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
Liu Yan, Lin Yun, Tan Wei-xian, Hong Wen. DEM Extraction Based on Interferometric Circular SAR[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1463-1469. doi: 10.11999/JEIT141022
Citation: Cai Zi-xing, Peng Meng, Yu Ling-li. Adaptive Incremental Principal Component Analysis Visual Tracking Method Based on Temporal Characteristics[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2571-2577. doi: 10.11999/JEIT141646

Adaptive Incremental Principal Component Analysis Visual Tracking Method Based on Temporal Characteristics

doi: 10.11999/JEIT141646
Funds:

The Major Research Project of the National Natural Science Foundation of China (90820302)

  • Received Date: 2014-12-25
  • Rev Recd Date: 2015-07-20
  • Publish Date: 2015-11-19
  • Existing visual tracking methods based on incremental Principal Component Analysis (PCA) learning have two problems. First, the measurement model does not consider the continuation characteristics of the object appearance changes. Second, when the manifold distribution of target appearance is non-linear structure, the incremental principal component analysis learning based on fixed update frequency can not adapt to changes of subspace model. Therefore, the more reasonable a priori probability distribution of targets is proposed based on the continuity of the object appearance changes in the subspace model. Then, according to the matching degree between the current tracking results and the subspace model, the proposed method adaptively adjusts forgetting factor, in order to make the subspace model more adaptable to the object appearance change. Experimental results show that the proposed method can improve the tracking accuracy and robustness.
  • Ross D A, Lim J W, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
    Bao C L, Wu Y, Linh H B, et al.. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1830-1837.
    MeI X and Ling H B. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
    Babenko B, Yang M H, Belongie S, et al.. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
    Grabner H and Bischof H. On-line boosting and vision[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006, 1: 260-267.
    Avidan S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271.
    Yang M, Zhang C X, Wu Y W, et al.. Robust object tracking via online multiple instance metric learning[C]. Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, San Jose, 2013: 1-4.
    Zhong Wei, Lu Hu-chuan, and Yang M. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.
    吕卓纹, 王科俊, 李宏宇, 等. 融合Camshift的在线Adaboost目标跟踪算法[J].?中南大学学报(自然科学版), 2013, 44(2): 232-238.
    Lu Zhuo-wen, Wang Ke-jun, Li Hong-yu, et al.. Online Adaboost target tracking algorithm combined fused with Camshift[J]. Journal of Central South University(Science and Technology), 2013, 44(2): 232-238.
    钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. 浙江大学学报(工学版), 2011, 45(12): 2240-2246.
    Qian Cheng and Zhang San-yuan. Weighted incremental subspace learning algorithm suitable for object tracking[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(12): 2240-2246.
    Cruz-Mota J, Bierlaire M, and Thiran J. Sample and pixel weighting strategies for robust incremental visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(5): 898-911.
    Xie Yuan, Zhang Wen-sheng, Qu Yan-yun, et al.. Discriminative subspace learning with sparse representation view-based model for robust visual tracking[J]. Pattern Recognition, 2014, 47(3): 1383-1394.
    Ji Zhang-jian, Wang Wei-qiang, and Xu Ning. Robust object tracking via incremental subspace dynamic sparse model[C]. Proceedings of IEEE International Conference on Multimedia and Expo, Chengdu, 2014: 1-6.
    Guo Yan-wen, Chen Ye, and Tang Feng. Object tracking using learned feature manifolds[J]. Computer Vision and Image Understanding, 2014, 118(1): 128-139.
    Chen Wei-hua, Cao Li-jun, and Zhang Jun-ge. An adaptive combination of multiple features for robust tracking in real scene[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013: 129-136.
    Yang Han-xuan, Song Zhan, and Chen Ru-nen. An incremental PCA-HOG descriptor for robust visual hand tracking[J]. Lecture Notes in Computer Science, 2010, 6553: 687-695.
    Moghaddam B and Pentland A. Probabilistic visual learning for object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, Cambridge, 1995: 786-793.
    Chen Feng, Wang Qing, Wang Song, et al.. Object tracking via appearance modeling and sparse representation[J]. Image and Vision Computing, 2011, 29(11): 787-796.
    Wang Dong, Lu Hu-chuan, and Yang M H . Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-325.
    Wang Qing, Chen Feng, Xu Wen-li, et al.. Object tracking via partial least squares analysis[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4454-4465.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1439) PDF downloads(1075) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return