Advanced Search
Volume 37 Issue 10
Sep.  2015
Turn off MathJax
Article Contents
Cai Nian, Huang Wei-wei, Xie Wei, Ye Qian, Yang Zhi-jing. Ensemble Empirical Mode Decomposition Base on Complementary Adaptive Noises[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2383-2389. doi: 10.11999/JEIT141632
Citation: Cai Nian, Huang Wei-wei, Xie Wei, Ye Qian, Yang Zhi-jing. Ensemble Empirical Mode Decomposition Base on Complementary Adaptive Noises[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2383-2389. doi: 10.11999/JEIT141632

Ensemble Empirical Mode Decomposition Base on Complementary Adaptive Noises

doi: 10.11999/JEIT141632
Funds:

The National Natural Science Foundation of China (61001179, 61471132)

  • Received Date: 2014-12-25
  • Rev Recd Date: 2015-06-15
  • Publish Date: 2015-10-19
  • Empirical Model Decomposition (EMD) and its improved algorithms are most useful signal processing methods. However, those methods still lack rigorous mathematical theory. This paper attempts to analyze mathematically the reconstruction errors for Ensemble EMD (EEMD) and EEMD with Adaptive Noises (EEMDAN). Moreover, the formulae of the residual noise are deduced step by step. There exists the residual noise in each intrinsic mode function during the EEMDAN. To suppress the residual noise, an improved ensemble empirical mode decomposition with complementary adaptive noises by adding pairs of positive and negative noises is proposed. The experimental results indicate that the proposed method can obviously reduce the residual noise in each intrinsic mode function compared with the EEMD and the EEMDAN, and it also has better signal reconstruction precision and faster signal decomposition.
  • loading
  • Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
    Yang Z, Ling B W K, and Bingham C. Trend extraction based on separations of consecutive empirical mode decomposition components in Hilbert marginal spectrum[J]. Measurement, 2013, 46(8): 2481-2491.
    Yang Z, Ling B W K, and Bingham C. Fault detection and signal reconstruction for increasing operational availability of industrial gas turbines[J]. Measurement, 2013, 46(6): 1938-1946.
    王玉静, 康守强, 张云, 等. 基于集合经验模态分解敏感固有模态函数选择算法的滚动轴承状态识别方法[J]. 电子与信息学报, 2014, 36(3): 595-600.
    Wang Yu-jing, Kang Shou-qiang, Zhang Yun, et al.. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics Information Technology, 2014, 36(3): 595-600.
    Li H, Wang X, Chen L, et al.. Denoising and R-peak detection of electrocardiogram signal based on EMD and improved approximate envelope[J]. Circuits, Systems, and Signal Processing, 2014, 33(4): 1261-1276.
    杨达, 王孝通, 徐冠雷. 基于多尺度极值的一维信号趋势项快速提取方法研究[J]. 电子与信息学报, 2013, 35(5): 1208-1214.
    Yang Da, Wang Xiao-tong, and Xu Guan-lei. Research on 1D signal fast trend extracting via multi-scale extrema[J]. Journal of Electronics Information Technology, 2013, 35(5): 1208-1214.
    白春华, 周宣赤, 林大超, 等. 消除 EMD 端点效应的 PSO-SVM 方法研究[J]. 系统工程理论实践, 2013, 33(5): 1298-1306.
    Bai Chun-hua, Zhou Xuan-chi, and Lin Da-chao, et al.. PSO-SVM method based on elimination of end effects in EMD[J]. Systems Engineering-Theory Practice, 2013, 33(5): 1298-1306.
    Lin D C, Guo Z L, An F P, et al.. Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression[J]. Mechanical Systems and Signal Processing, 2012, 31: 13-28.
    汤宝平, 董绍江, 马靖华. 基于独立分量分析的EMD模态混叠消除方法研究[J]. 仪器仪表学报, 2012, 33(7): 1477-1482.
    Tang Bao-ping, Dong Shao-jiang, and Ma Jing-hua. Study on the method for eliminating mode mixing of empirical mode decomposition based on independent component analysis[J]. Chinese Journal of Scientific Instrument, 2012, 33(7): 1477-1482.
    Shen W C, Chen Y H, and Wu A Y A. Low-complexity sinusoidal-assisted EMD (SAEMD) algorithms for solving mode-mixing problems in HHT[J]. Digital Signal Processing, 2014(24): 170-186.
    Zheng J, Cheng J, and Yang Y. Partly ensemble empirical mode decomposition: an improved noise-assisted method for eliminating mode mixing[J]. Signal Processing, 2014(96): 362-374.
    高云超, 桑恩方, 许继友. 分离EMD中混叠模态的新方法[J]. 哈尔滨工程大学学报, 2008, 29(9): 963-966.
    Gao Yun-chao, Sang En-fang, and Xu Ji-you. A new method for separating mixed modes in empirical mode decomposition [J]. Journal of Harbin Engineering University, 2008, 29(9): 963-966.
    Wu Z and Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
    Yeh J R, Shieh J S, and Huang N E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156.
    Torres M E, Colominas M A, Schlotthauer G, et al.. A complete ensemble empirical mode decomposition with adaptive noise[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech, 2011: 4144-4147.
    Wu Z and Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2046): 1597-1611.
    Goldberger A L, Amaral L A N, Glass L, et al.. PhysioBank, Physio Toolkit and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): E215-E220.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1462) PDF downloads(657) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return