Advanced Search
Volume 37 Issue 12
Jan.  2016
Turn off MathJax
Article Contents
Wu Cheng-guang, Deng Bin, Su Wu-ge, Wang Hong-qiang, Qin Yu-liang. ISAR Imaging Method Based on the Bayesian Group-sparse Modeling[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624
Citation: Wu Cheng-guang, Deng Bin, Su Wu-ge, Wang Hong-qiang, Qin Yu-liang. ISAR Imaging Method Based on the Bayesian Group-sparse Modeling[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624

ISAR Imaging Method Based on the Bayesian Group-sparse Modeling

doi: 10.11999/JEIT141624
Funds:

The National Natural Science Foundation of China (61171133)

  • Received Date: 2014-12-18
  • Rev Recd Date: 2015-10-19
  • Publish Date: 2015-12-19
  • The traditional sparse ISAR imaging method mainly considers the recovery of coefficients on individual scatters. However, in the practice situation, the target scatters presented by blocks or groups do not emerge on individual. In this case, the usual sparse recover algorithm can not depict the shape of real target, thus, the group-sparse recover approaches are adopted to reconstruct the coefficients of target scatters. The recovery method based on the Bayesian Group-Sparse modeling and Variational inference (VBGS) uses a hierarchical construction of a general signal prior to model the group sparse signals and contain the merit of Sparse Bayesian Learning (SBL) on parameters learning, as a result, it can reconstruct the group sparse signal better than the usual recover algorithm. The VBGS method uses the variational Bayesian inference approach to estimate the parameters of the unknown signal automatically and does not require the parameter-tuning procedures. Considering the sparse group target, this paper combines the Compress Sensing (CS) theory and the VBGS method to reconstruct the ISAR image. The result of experiments show that the proposed method can improve the imaging accuracy compared with traditional algorithm, and can fit to reconstruct the image of ISAR target which has group structure.
  • loading
  • Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
    Zhang Xiao-hua, Bai Ting, Meng Hong-yun, et al.. Compressive sensing based ISAR imaging via the combination of the sparsity and nonlocal total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 990-994.
    Rao Wei, Li Gang, and Wang Xi-qin. Parametric sparse representation method for SAR imaging of rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 910-919.
    吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨 ISAR 成像算法[J]. 电子与信息学报, 2014, 36(1): 187-193.
    Wu Min, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193.
    苏伍各, 王宏强, 邓彬, 等. 基于方差成分扩张压缩的稀疏贝叶斯ISAR成像方法[J]. 电子与信息学报, 2014, 36(7): 1525-1531.
    Su Wu-ge, Wang Hong-qiang, Deng Bing, et al.. Sparse Bayesian representation of the ISAR imaging method based on ExCoV[J]. Journal of Electronics Information Technology, 2014, 36(7): 1525-1531.
    Yang Jun-gang, Huang Xiao-tao, Thompson J, et al.. Compressed sensing radar imaging with compensation of observation position error[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4608-4620.
    Liu Zhen, You Peng, Wei Xi-zhang, et al.. Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
    Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586597.
    Wipf D P and Rao B. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164.
    Qiu Kun and Aleksandar D. Variance-component based sparse signal reconstruction and model selection[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 2935-2952.
    Eldar Y C and Mishali M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302-5316.
    Meier L, Van De Geer S, and Buhlmann P. The group lasso for logistic regression[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2008, 70(1): 53-71.
    Stojnic M. L2/L1-optimization in block-sparse compressed sensing and its strong thresholds[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 350-357.
    Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: Uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 30423054.
    Zhao Li-fan, Wang Lu, Bi Guo-an, et al.. An autofocus technique for high resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392-6403.
    Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. Super-resolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013.
    Zhang Zhi-ling and Rao B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015.
    Babacan S D, Nakajima S, and Do M N. Bayesian group sparse modeling and variational inference[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2906-2921.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1453) PDF downloads(758) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return