Advanced Search
Volume 37 Issue 9
Sep.  2015
Turn off MathJax
Article Contents
Zhang Hai-bin, He Qing-bo, Kong Fan-rang. Time-varying Signal Detection and Recovery Method Based on Varying Parameter Stochastic Resonance and Normalization Transformation[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2124-2131. doi: 10.11999/JEIT141618
Citation: Zhang Hai-bin, He Qing-bo, Kong Fan-rang. Time-varying Signal Detection and Recovery Method Based on Varying Parameter Stochastic Resonance and Normalization Transformation[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2124-2131. doi: 10.11999/JEIT141618

Time-varying Signal Detection and Recovery Method Based on Varying Parameter Stochastic Resonance and Normalization Transformation

doi: 10.11999/JEIT141618
  • Received Date: 2014-12-18
  • Rev Recd Date: 2015-02-15
  • Publish Date: 2015-09-19
  • The nonlinear stochastic resonance system has the ability to take advantage of background noise to enhance the weak signal among it. It provides the new approach to detect the weak signal embedded with heavy noise. This study proposes a new Varying Parameter Stochastic Resonance (VPSR) model. The model performs well in the detection of a time-varying signal with noise as well as the denoising and signal recovery. This study takes the determination coefficient and cross correlation coefficient as the criteria and analyzes the influence of different parameters variation on the system output. The simulation results indicate the model performs better in the time-varying signal recovery than the traditional one. The proposed method develops the area of time-varying signal detection with stochastic resonance which can be hoped to be widely used in the aperiodic signal processing, radar communication, etc. due to its superiority.
  • loading
  • Benzi R, Sutera A, and Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981, 14(11): L453-L457.
    Gammaitoni L, Hanggi P, Jung P, et al.. Stochastic resonance[J]. Reviews of Modern Physics, 1998, 70(1): 223-287.
    郑仕谱. 基于随机共振的弱信号提取方法研究[D]. [硕士论文], 浙江大学, 2014.
    Zheng Shi-pu. Study on weak signal extraction technology using stochastic resonance[D]. [Master dissertation], Zhejiang University, 2014.
    杨祥龙, 汪乐宇. 一种强噪声背景下弱信号检测的非线性方法[J]. 电子与信息学报, 2002, 24(6): 811-815.
    Yang Xiang-long and Wang Le-yu. A new detection method of weak signal in strong background-noise level[J]. Journal of Electronics Information Technology, 2002, 24(6): 811-815.
    梁军利, 杨树元, 唐志峰. 基于随机共振的微弱信号检测[J]. 电子与信息学报, 2006, 28(6): 1068-1072.
    Liang Jun-li, Yang Shu-yuan, and Tang Zhi-feng. Weak signal detection based on stochastic resonance[J]. Journal of Electronics Information Technology, 2006, 28(6): 1068-1072.
    王强. 基于变步长随机共振的弱信号检测技术[J]. 信息通信, 2014, 12(8): 25.
    Wang Qiang. Weak signal detection based on step-change stochastic resonance[J]. Information Communications, 2014, 12(8): 25.
    Li Ji-meng, Chen Xue-feng, and He Zheng-jia. Multi-stable stochastic resonance and its application research on mechanical fault diagnosis[J]. Journal of Sound and Vibration, 2013, 332(22): 5999-6015.
    冷永刚, 田祥友. 一阶线性系统随机共振在转子轴故障诊断中的应用研究[J]. 振动与冲击, 2014, 62(17): 1-5.
    Leng Yong-gang and Tian Xiang-you. Application of a first-order linear system's stochastic resonance in fault diagnosis of rotor shaft[J]. Journal of Vibration and Shock, 2014, 62(17): 1-5.
    Lu Si-liang, He Qing-bo, and Kong Fan-rang. Stochastic resonance with Woods-Saxon potential for rolling element bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2014, 45(2): 488-503.
    Xu Jia-wen, Shao Wei-wei, Kong Fan-rang, et al.. Right-angle piezoelectric cantilever with improved energy harvesting efficiency[J]. Applied Physics Letters, 2010, 96(15): 152904(1-3).
    Harne R L and Wang K W. A review of the recent research on vibration energy harvesting via bistable systems[J]. Smart Materials and Structures, 2013, 22(2): 023001(1-12).
    朱文涛, 苏涛, 杨涛, 等. 线性调频连续波信号检测与参数估计算法[J]. 电子与信息学报, 2014, 36(3): 552-558.
    Zhu Wen-tao, Su Tao, Yang Tao, et al.. Detection and parameter estimation of linear frequency modulation continuous wave signal[J]. Journal of Electronics Information Technology, 2014, 36(3): 552-558.
    朱健东, 赵拥军, 唐江. 线性调频连续波信号的周期分数阶Fourier变换检测与估计[J]. 电子与信息学报, 2013, 35(8): 1827-1833.
    Zhu Jian-dong, Zhao Yong-jun, and Tang Jiang. Periodic FRFT based detection and estimation for LFMCW signal[J]. Journal of Electronics Information Technology, 2013, 35(8): 1827-1833.
    Collins J J, Chow C C, Capela A C, et al.. Aperiodic stochastic resonance[J]. Physical Review E, 1996, 54(5): 5575-5584.
    段江海, 宋爱国. 双稳系统中非周期随机共振的数值仿真[J]. 电路与系统学报, 2004, 9(5): 149-152.
    Duan Jiang-hai and Song Ai-guo. Numerical simulations of aperiodic stochastic resonance in bistable systems[J]. Journal of Circuits and Systems, 2004, 9(5): 149-152.
    Wang Xiao-min and Wen Chuan. Detection and parameter estimation of LFM signal based on stochastic resonance[C]. Proceedings of the 2011 2nd International Conference on Networking and Information Technology, Singapore, 2011, 112-119.
    Peng Hao, Zhong Su-chuan, Tu Zhe, et al.. Stochastic resonance of over-damped bistable system driven by chirp signal and Gaussian white noise[J]. Acta Physica Sinica, 2013, 62(8): 080501(1-6).
    Yang Ding-xin, Hu Zheng, and Yang Yong-min. The analysis of stochastic resonance of periodic signal with large parameters[J]. Acta Physica Sinica, 2012, 61(8): 080501(1-10).
    Leng Yong-gang, Wang Tai-yong, Qin Xu-da, et al.. Power spectrum research of twice sampling stochastic resonance response in a bistable system[J]. Acta Physica Sinica, 2004, 53(3): 717-723.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1257) PDF downloads(544) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return