Citation: | Pan Sen-shan, Hu Yu-pu, Wang Bao-cang. Simpler Termination Proof on Homogeneous F5 Algorithm[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1989-1993. doi: 10.11999/JEIT141601 |
Buchberger B. Ein algorithmus zum auffinden der basiselemente des restklassenrings nach einem nulldimensionalen polynomideal[D]. [Ph.D. dissertation], Universitt Innsbruck, Austria, 1965.
|
Faugre J C. A new efficient algorithm for computing Grbner bases (F4)[J]. Journal of Pure and Applied Algebra, 1999, 139(1-3): 61-88.
|
Faugre J C. A new efficient algorithm for computing Grbner bases without reduction to zero (F5)[C]. Proceedings of the 27th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2002: 75-83.
|
Arri A and Perry J. The F5 criterion revised[J]. Journal of Symbolic Computation, 2011, 46(9): 1017-1029.
|
Gao Shu-hong, Guan Yin-hua, and Volny F IV. A new incremental algorithm for computing Groebner bases[C]. Proceedings of the 35th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2010: 13-19.
|
Volny F. New algorithms for computing Grbner bases[D]. [Ph.D. dissertation], Clemson University, USA, 2011.
|
Sun Yao and Wang Ding-kang. A generalized criterion for signature related Grbner basis algorithms[C]. Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2011: 337-344.
|
Eder C and Perry J. Signature-based algorithms to compute Grbner bases[C]. Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2011: 99-106.
|
Pan Sen-shan, Hu Yu-pu, and Wang Bao-cang. The termination of the F5 algorithm revisited[C]. Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2013: 291-298.
|
Eder C and Roune B H. Signature rewriting in Grbner basis computation[C]. Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2013: 331-338.
|
Eder C. An analysis of inhomogeneous signature-based Grbner basis computations[J]. Journal of Symbolic Computation, 2013, 59(0): 21-35.
|
Ding Jin-tai, Cabarcas D, Schmidt D, et al.. Mutant Grbner basis algorithm[C]. Proceedings of the 1st International Conference on Symbolic Computation and Cryptography, Beijing, China, 2008: 23-32.
|