Advanced Search
Volume 37 Issue 8
Aug.  2015
Turn off MathJax
Article Contents
Pan Sen-shan, Hu Yu-pu, Wang Bao-cang. Simpler Termination Proof on Homogeneous F5 Algorithm[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1989-1993. doi: 10.11999/JEIT141601
Citation: Pan Sen-shan, Hu Yu-pu, Wang Bao-cang. Simpler Termination Proof on Homogeneous F5 Algorithm[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1989-1993. doi: 10.11999/JEIT141601

Simpler Termination Proof on Homogeneous F5 Algorithm

doi: 10.11999/JEIT141601
  • Received Date: 2014-06-23
  • Rev Recd Date: 2015-04-24
  • Publish Date: 2015-08-19
  • Since the F5 algorithm is proposed, a bunch of signature-based Gr?bner basis algorithms appear. They use different selection strategies to get the basis gradually and use different criteria to discard redundant polynomials as many as possible. The strategies and criteria should satisfy some general rules for correct termination. Based on these rules, a framework which include many algorithms as instances is proposed. Using the property of rewrite basis, a simple proof of the correct termination of the framework is obtained. For the simple proof of the F5 algorithm, the reduction process is simplified. In particular, for homogeneous F5 algorithm, its complicated selection strategy is proved equivalent to selecting polynomials with respect to module order. In this way, the F5 algorithm can be seen as an instance of the framework and has a rather short proof.
  • loading
  • Buchberger B. Ein algorithmus zum auffinden der basiselemente des restklassenrings nach einem nulldimensionalen polynomideal[D]. [Ph.D. dissertation], Universitt Innsbruck, Austria, 1965.
    Faugre J C. A new efficient algorithm for computing Grbner bases (F4)[J]. Journal of Pure and Applied Algebra, 1999, 139(1-3): 61-88.
    Faugre J C. A new efficient algorithm for computing Grbner bases without reduction to zero (F5)[C]. Proceedings of the 27th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2002: 75-83.
    Arri A and Perry J. The F5 criterion revised[J]. Journal of Symbolic Computation, 2011, 46(9): 1017-1029.
    Gao Shu-hong, Guan Yin-hua, and Volny F IV. A new incremental algorithm for computing Groebner bases[C]. Proceedings of the 35th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2010: 13-19.
    Volny F. New algorithms for computing Grbner bases[D]. [Ph.D. dissertation], Clemson University, USA, 2011.
    Sun Yao and Wang Ding-kang. A generalized criterion for signature related Grbner basis algorithms[C]. Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2011: 337-344.
    Eder C and Perry J. Signature-based algorithms to compute Grbner bases[C]. Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2011: 99-106.
    Pan Sen-shan, Hu Yu-pu, and Wang Bao-cang. The termination of the F5 algorithm revisited[C]. Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2013: 291-298.
    Eder C and Roune B H. Signature rewriting in Grbner basis computation[C]. Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, New York, USA, 2013: 331-338.
    Eder C. An analysis of inhomogeneous signature-based Grbner basis computations[J]. Journal of Symbolic Computation, 2013, 59(0): 21-35.
    Ding Jin-tai, Cabarcas D, Schmidt D, et al.. Mutant Grbner basis algorithm[C]. Proceedings of the 1st International Conference on Symbolic Computation and Cryptography, Beijing, China, 2008: 23-32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1211) PDF downloads(280) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return