Citation: | Wang Feng, Xiang Xin, Yi Ke-chu, Xiong Lei. Robust Computational Methods for Smoothed L0 Approximation[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2377-2382. doi: 10.11999/JEIT141590 |
Cands E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
|
Mohimani H, Zadeh M, and Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed L0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
|
Hyder M M and Mahata K. An improved smoothed L0 approximation algorithm for sparse representation[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2194-2205.
|
Lv J, Huang L, Shi Y, et al.. Inverse synthetic aperture radar imaging via modified smoothed L0 norm[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13(7): 1235-1238.
|
Liu Z, You P, Wei X, et al.. Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
|
Guo L and Wen X. SAR image compression and reconstruction based on compressed sensing[J]. Journal of Information Computational Science, 2014, 11(2): 573-579.
|
Liu Z, Wei X, and Li X. Aliasing-free micro-Doppler analysis based on short-time compressed sensing[J]. IET Signal Processing, 2013, 8(2): 176-187.
|
Liu T and Zhou J. Improved smoothed L0 reconstruction algorithm for ISI sparse channel estimation[J]. The Journal of China Universities of Posts and Telecommunications, 2014, 21(2): 40-47.
|
Ye X and Zhu W. Sparse channel estimation of pulse-shaping multiple-input-multiple-output orthogonal frequency division multiplexing systems with an approximate gradient L2-SL0 reconstruction algorithm[J]. IET Communications, 2014, 8(7): 1124-1131.
|
王军华, 黄知涛, 周一宇, 等. 基于近似L0 范数的稳健稀疏重构算法[J]. 电子学报, 2012, 40(6): 1185-1189.
|
Wang Jun-hua, Huang Zhi-tao, Zhou Yi-yu, et al.. Robust sparse recovery based on approximate L0 norm[J]. Acta Electronica Sinica, 2012, 40(6): 1185-1189.
|
赵瑞珍, 林婉娟, 李浩, 等. 基于光滑L0范数和修正牛顿法的压缩感知重建算法[J]. 计算机辅助设计与图形学学报, 2012, 24(4): 478-484.
|
Zhao Rui-zhen, Lin Wan-juan, Li Hao, et al.. Reconstruction algorithm for compressive sensing based on smoothed L0 norm and revised newton method[J]. Journal of Computer- Aided Design Computer Graphic, 2012, 24(4): 478-484.
|
杨良龙, 赵生妹, 郑宝玉, 等. 基于SL0 压缩感知信号重建的改进算法[J]. 信号处理, 2012, 28(6): 834-841.
|
Yang Liang-long, Zhao Sheng-mei, Zheng Bao-yu, et al.. The improved reconstruction algorithm for compressive sensing on SL0[J]. Signal Processing, 2012, 28(6): 834-841.
|
余付平, 沈堤. 基于拟牛顿方向的改进平滑L0 算法[J]. 计算机工程与应用, 2013, 49(22): 215-218.
|
Yu Fu-ping and Shen Di. Improved smoothed L0 approximation algorithm based on Quasi-Newton direction[J]. Computer Engineering and Applications, 2013, 49(22): 215-218.
|
贺亚鹏, 庄珊娜, 张燕洪, 等. 一种基于交叉验证的稳健SL0目标参数提取算法[J]. 系统工程与电子技术, 2012, 34(1): 64-68.
|
He Ya-peng, Zhuang Shan-na, Zhang Yan-hong, et al.. Cross validation based robust-SL0 algorithm for target parameter extraction[J]. Systems Engineering and Electronics, 2012, 34(1): 64-68.
|
邱伟, 赵宏钟, 陈建军, 等. 基于平滑L0 范数的高分辨雷达一维成像研究[J]. 电子与信息学报, 2011, 33(12): 2869-2874.
|
Qiu Wei, Zhao Hong-zhong, Chen Jian-jun, et al.. High- resolution radar one-dimensional imaging based on smoothed L0 norm[J]. Journal of Electronics Information Technology, 2011, 33(12): 2869-2874.
|
Gorodnitsky I F and Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a reweighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616.
|
Pant J K, Lu W, and Antoniou A. New improved algorithms for compressive sensing based on Lp norm[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2014, 61(3): 198-202.
|
Yuille A L and Rangarajan A. The concave-convex procedure [J]. Neural Computer, 2003, 15(4): 915-936.
|
Rao B D, Engan K, Cotter S F, et al.. Subset selection in noise based on diversity measure minimization[J]. IEEE Transactions on Signal Processing, 2003, 51(3): 760-770.
|