Advanced Search
Volume 37 Issue 8
Aug.  2015
Turn off MathJax
Article Contents
Lü Zhi-feng, Lei Hong. Compressive Sensing MUSIC Algorithm Based on Difference Map[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1874-1878. doi: 10.11999/JEIT141542
Citation: Lü Zhi-feng, Lei Hong. Compressive Sensing MUSIC Algorithm Based on Difference Map[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1874-1878. doi: 10.11999/JEIT141542

Compressive Sensing MUSIC Algorithm Based on Difference Map

doi: 10.11999/JEIT141542
  • Received Date: 2014-12-04
  • Rev Recd Date: 2015-03-13
  • Publish Date: 2015-08-19
  • The Multiple Measurement Vectors (MMV) problem addresses the recovery of unknown input vectors which share the same sparse support. The Compressed Sensing (CS) has the capability of estimating the sparse support even in coherent cases, where the traditional array processing approaches like MUltiple SIgnal Classification (MUSIC) often fail. However, CS guarantees the accurate recovery in a probabilistic manner, and often shows inferior performance in cases where the traditional ways succeed. Recently, a novel compressive MUSIC (or CS-MUSIC) algorithm is proposed by Kim et al., in which both the advantages of CS and traditional MUSIC-like methods are combined together. As an iterative projecting algorithm, Difference Map (DM) is first used to solve the phase retrieval problem in crystallography. Recent results show that it has excellent performance in solving a wide variety of non-convex problems like compressed sensing. In this paper, a DM-based CS-MUSIC algorithm is proposed. Experiments show that the proposed algorithm is very effective in MMV problem solving and the success rate of CS-MUSIC is dramatically improved.
  • loading
  • Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
    Cades E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
    Fang L Y, Li S T, Ryan P, et al.. Fast acquisition and reconstruction of optical coherence tomography images via sparse representation[J]. IEEE Transactions on Medical Imaging, 2013, 32(11): 2034-2049.
    Yang J, Thompson J, Huang X T, et al.. Segmented reconstruction for compressed sensing SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4214-4225.
    Friedland, S, Li Q, and Schonfeld D. Compressive sensing of sparse tensors[J]. IEEE Transactions on Image Processing, 2014, 23(10): 4438-4447.
    Hawes M B and Liu W. Robust sparse antenna array design via compressive sensing[C]. IEEE International Conference on Digital Signal Processing, Nice, France, 2013: 1-5.
    Northardt E T, Bilik I, and Abramovich Y I. Spatial compressive sensing for direction-of-arrival estimation with bias mitigation via expected likelihood[J]. IEEE Transactions on Signal Processing, 2013, 61(5): 1183-1195.
    Nagahara M, Quevedo D E, and Ostergaard J. Sparse packetized predictive control for networked control over erasure channels[J]. IEEE Transactions on Automatic Control, 2014, 59(7): 1899-1905.
    Krim H and Viberg M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
    Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas ?and Propagation, 1986, 34(3): 276-280.
    Kim J M, Lee O K, and Ye J C. Compressive MUSIC: revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278-301.
    Lee K and Bresler Y. Subspace-augmented MUSIC for joint sparse recovery with any rank[C]. Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop, Jerusalem, Israel, 2010: 205-208.
    Elser V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1): 40-55.
    Elser V, Rankenburg I, and Thibault P. Searching with iterated maps[J]. Proceedings of the National Academy of Sciences, 2007, 104(2): 418-423.
    Eldar Y C, Sidorenko P, Mixon D G, et al.. Sparse phase retrieval from short-time Fourier measurements[J]. IEEE Signal Processing Letters, 2015, 22(5): 638-642.
    Shechtman Y, Beck A, and Eldar Y C. GESPAR: efficient phase retrieval of sparse signals[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 928-938.
    Qiu K and Dogandzic A. Nonnegative signal reconstruction from compressive samples via a difference map ECME algorithm[C]. Proceedings of the IEEE Statistical Signal Processing Workshop, Nice, France, 2011: 561-564.
    Landecker W, Chartrand R, and DeDeo S. Robust compressed sensing and sparse coding with the difference map[C]. IEEE European Conference on Computer Vision, Zurich, Switzerland, 2014: 315-329.
    Feng P. Universal minimum-rate sampling and spectrum-blind reconstruction for multiband signals[D]. [Ph.D. dissertation], University of Illinois, Urbana-Champaign, 1997.
    Chen J and Huo X. Theoretical results on sparse representations of multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4634-4643.
    Tropp J A, Gilbert A C, and Strauss M J. Algorithms for simultaneous sparse approximation, Part I: Greedy pursuit[J]. Signal Processing, 2006, 86(3): 572-588.
    Malioutov D, Cetin M, and Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022.
    Tropp J A. Algorithms for simultaneous sparse approximation. Part II: Convex relaxation[J]. Signal Processing, 2006, 86(3): 589-602.
    Wipf D P. Bayesian methods for finding sparse representations[D]. [Ph.D. dissertation], University of California, San Diego, 2006.
    Mishali M and Eldar Y C. Reduce and boost: recovering arbitrary sets of jointly sparse vectors[J]. IEEE Transactions on Signal Processing, 2008, 56(10): 4692-4702.
    Eldar Y C, Kuppinger P, and Bolcskei H. Compressed sensing of block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
    Baraniuk R G, Cevher V, Duarte M F, et al.. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.
    Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408-1418.
    Roy R and Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(7): 984-995.
    Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.
    Bauschke H and Borwein J. On projection algorithms for solving convex feasibility problems[J]. SIAM Review, 1996, 38(3): 367-426.
    Adiga A and Seelamantula C S. An alternating Lp-L2 projections algorithm (ALPA) for speech modeling using sparsity constraints[C]. IEEE International Conference on Digital Signal Processing, Hong Kong, China, 2014: 291-296.
    Yan W, Wang Q, and Shen Y. Shrinkage-based alternating projection algorithm for efficient measurement matrix construction in compressive sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(5): 1073-1084.
    Hesse R, Luke D R, and Neumann P. Alternating projections and Douglas-Rachford for sparse affine feasibility[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4868-4881.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1431) PDF downloads(684) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return