Advanced Search
Volume 37 Issue 7
Jul.  2015
Turn off MathJax
Article Contents
Wu Guang-wen, Zhang Ai-jun, Wang Chang-ming. Novel Optimization Method for ProjectionMatrix in Compress Sensing Theory[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450
Citation: Wu Guang-wen, Zhang Ai-jun, Wang Chang-ming. Novel Optimization Method for ProjectionMatrix in Compress Sensing Theory[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450

Novel Optimization Method for ProjectionMatrix in Compress Sensing Theory

doi: 10.11999/JEIT141450
  • Received Date: 2014-11-20
  • Rev Recd Date: 2015-02-11
  • Publish Date: 2015-07-19
  • Considering the influence of the projection matrix on Compressed Censing (CS), a novel method is proposed to optimize the projection matrix. In order to improve the signals reconstruction precise and the stability of the optimization algorithm of the projection matrix, the proposed method adopts a differentiable threshold function to shrink the off-diagonal items of a Gram matrix corresponding to the mutual coherence between the projection matrix and sparse dictionary, and introduces a gradient descent approach based on the Wolfs-conditions to solve the optimization projection matrix. The Basis-Pursuit (BP) algorithm and the Orthogonal Matching Pursuit (OMP) algorithm are applied to find the solution of the minimuml0-norm optimization issue and the compressed sensing are utilized to sense and reconstruct the random vectors, wavelets noise test signals and pictures. The results of the simulation show the proposed method based on the projection matrix optimization is able to improve the quality of the reconstruction performance.
  • Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
    Candes E J, Romberg J K, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223
    Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
    郑红, 李振. 压缩感知理论投影矩阵优化方法综述[J]. 数据采集与处理, 2014, 52(1): 43-53.
    Zheng Hong and Li Zhen. Survey on optimization methods for projection matrix in compress sensing theory[J]. Journal of Data Acquisition and Processing, 2014, 52(1): 43-53.
    戴琼海, 付长军, 季向阳. 压缩感知研究[J]. 计算机学报, 2011, 34(3): 425-434.
    Dai Qiong-hai, Fu Chang-jun, and Ji Xiang-yang. Research on compressed sensing[J]. Chinese Journal of Computers, 2011, 34(3): 425-434.
    Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5703.
    Abolghasemi V, Ferdowsi S, and Sanei S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing[J]. Signal Processing, 2012, 92(3): 999-1009.
    李佳, 王强, 沈毅, 等. 压缩感知中测量矩阵与重建算法的协同构造[J]. 电子学报, 2013, 41(1): 29-34.
    Li Jia, Wang Qiang, Shen Yi, et al.. Collaborative construction of measurement matrix and reconstruction algorithm in compressive sensing[J]. Acta Electronica Sinica, 2013, 41(1): 29-34.
    Zhang Qi-heng, Fu Yu-li, Li Hai-feng, et al.. Optimized projection matrix for compressed sensing[J]. Circuit System Signal Processing, 2014, 33(5): 1627-1636.
    Xu Jian-ping, Pi Yi-ming, and Cao Zong-jie. Optimized projection matrix for compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2010, DOI: 10.1155/2010/560349.
    林波, 张增辉, 朱炬波. 基于压缩感知的DOA估计稀疏化模型与性能分析[J]. 电子与信息学报, 2014, 36(3): 589-594.
    Lin Bo, Zhang Zeng-hui, and Zhu Ju-bo. Sparsity model and performance analysis of DOA estimation with compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(3): 589-594.
    Donoho D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.
    Donoho D L and Stark P B. Uncertainty principles and signal recovery[J]. SIAM Journal on Applied Mathematics, 1989, 49(3): 906-931.
    Donoho D L and Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via minimization[J]. Proceedings of the National Academy of Science, 2003, 100(5): 2197-2202.
    Jorge N and Wright S J. Numerical Optimization Theoretical and Practical Aspects[M]. 2nd Edition, New York: Springer- Verlag Berlin and Heidelberg GmbH Co. K, 2006: 30-60.
  • Cited by

    Periodical cited type(11)

    1. 牟晓霜,黎淼,王玺,梁文凯,王峰,理玉龙,关赞洋,余泊汕,张磊,高翊喆,张佳杰. 基于分块平滑投影二次重构算法的单像素成像系统. 强激光与粒子束. 2022(11): 157-164 .
    2. 万艳,石锦峰,农旭安. 基于ZED相机的无人机三维重建系统. 中国新通信. 2019(14): 155-157 .
    3. 苗英杰,崔琛,易仁杰. 基于BFGS拟牛顿法的观测矩阵优化算法. 电子信息对抗技术. 2019(06): 32-37+55 .
    4. 王烈,罗文,秦伟萌. 分段弱选择自适应正交匹配追踪算法. 计算机工程与设计. 2018(12): 3767-3773 .
    5. 周四望,刘龙康. 基于小波变换的图像零树压缩感知方法. 湖南大学学报(自然科学版). 2017(02): 129-136 .
    6. 胡强,林云. 基于观测矩阵优化的自适应压缩感知算法. 计算机应用. 2017(12): 3381-3385 .
    7. 边胜琴,徐正光,张利欣. 依据列相关性优化高斯测量矩阵. 计算机测量与控制. 2017(11): 141-145 .
    8. 麻曰亮,裴立业,江桦. 改进的压缩感知测量矩阵优化方法. 信号处理. 2017(02): 192-197 .
    9. 王占刚,王大鸣,巴斌. 适用于压缩感知估计角度的测量矩阵研究. 信号处理. 2017(07): 970-977 .
    10. 金广智,石林锁,崔智高,刘浩,牟伟杰. 结合GLCM与三阶张量建模的在线目标跟踪. 电子与信息学报. 2016(07): 1609-1615 . 本站查看
    11. 王怀光,张培林,吴定海,范红波. 基于提升小波的机械振动信号自适应压缩感知. 中南大学学报(自然科学版). 2016(03): 771-776 .

    Other cited types(20)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1568) PDF downloads(700) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return