Citation: | Jiang Ping, Zhang Jian-zhou. No-reference Image Quality Assessment Based on Local Maximum Gradient[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2587-2593. doi: 10.11999/JEIT141447 |
Liu H and Heynderickx I. Visual attention in objective image quality assessment: Based on eye-tracking data[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(7): 971-982.
|
Hassen R, Wang Z, and Salama M. Image sharpness assessment based on local phase coherence[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2798-2810.
|
Wang Z, Bovik A C, Sheikh H R, et al.. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
|
Xue W F, Zhang L, Mou X Q, et al.. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23(2): 684-695.
|
Rehman A and Wang Z. Reduced-reference image quality assessment by structural similarity estimation[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3378-3389.
|
Zeng K and Wang Z. Polyview fusion: a strategy to enhance video-denoising algorithms[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2324-2328.
|
Li C F, Ju Y W, Bovik A C, et al.. No-training, no-reference image quality index using perceptual features[J]. Optical Engineering, 2013, 52(5): 188-194.
|
Saha A and Wu Q M. Utilizing image scales towards totally training free blind image quality assessment[J]. IEEE Transactions on Image Processing, 2015, 24(6): 1879-1892.
|
Mittal A, Muralidhar G S, and Bovik A C. Making a completely blind image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209-212.
|
Bahrami K and Kot A C. A fast approach for no-reference image sharpness assessment based on maximum local variation[J]. IEEE Signal Processing Letters, 2014, 21(6): 751-755.
|
Saifeldeen A and Jiao S H. No-reference image quality assessment algorithm based on Weibull statistics of log- derivatives of natural secenes[J]. Electronics Letters, 2014, 50(8): 595-596.
|
Moorthy A K and Bovik A C. Blind image quality assessment: from scene statistics to perceptual quality[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3350-3364.
|
Vu C T, Phan T D, and Chandler D M. S3: a spectral and spatial measure of local perceived sharpness in natural images [J]. IEEE Transactions on Image Processing, 2012, 21(3): 934-945.
|
邵宇, 孙富春, 刘莹. 基于局部结构张量的无参考型图像质量评价方法[J]. 电子信息学报, 2012, 34(8): 1779-1785.
|
Shao Yu, Sun Fu-chun, and Liu Ying. A no-reference image quality assessment method using local structure tensor[J]. Journal of Electronics Information Technology, 2012, 34(8): 1779-1785.
|
Zhu X and Milanfar P. A no-reference sharpness metric sensitive to blur and noise[C]. International Workshop on Quality of Multimedia Experience, San diego, USA, 2009: 64-69.
|
Liu X, Tanaka M, and Okutomi M. Noise level estimation using weak textured patches of a single noisy image[C]. Proceedings of 2012 International Conference on Image Processing, Florida, USA, 2012: 665-668.
|
Ponomarenko N, Lukin V, and Zelensky A. TID2008 a database for evaluation of full-reference visual quality assessment metrics[J]. Advances of Modern Radio Electronics, 2009, 10(1): 30-45.
|
Wang Z and Bovik A C. Modern Image Quality Assessment [M]. New York: Morgan and Claypool Publishers, 2006: 41-44.
|