Citation: | Zhi Wei-mei, Zhang Ting, Fan Ming. k-nearest Neighbor Classification Based on Influence Function[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1626-1632. doi: 10.11999/JEIT141433 |
Tan P N and Steinbach M著, 范明, 范宏建, 译. 数据挖掘入门[M]. 第2版, 北京: 人民邮电出版社, 2011: 127-187.
|
Quinlan J S. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106.
|
Domingos P and Pazzani M J. Beyond independence: conditions for the optimality of the simple bayesian classifier[C].?Proceedings of the International Conference on Machine Learning, Bari, Italy, 1996: 105-112.
|
Rumelhart D E, Hinton G E, and Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(9): 533-536.
|
Boser B E,?Guyon I M, and Vapnik V N.?A training algorithm for optimal margin classifiers[C].?Proceedings of the Conference on Learning Theory, Pittsburgh, USA, 1992: 144-152.
|
Dasarathy B V. Nearest Neighbor (NN) norms: NN Pattern Classification Techniques[M]. Michigan: IEEE Computer Society Press, 1991: 64-85.
|
Leake D B.?Experience, introspection and expertise: learning to refine the case-based reasoning process[J].?Journal of Experimental Theoretical Artificial Intelligent, 1996, 8(3/4): 319-339.
|
Hinneburg A and Keim D A. An efficient approach to clustering in large multimedia databases with noise[C]. Proceedings of the Knowledge Discovery and Data Mining, New York, USA, 1998: 58-65.
|
html. 2014.5.
|
Liu X Y, Li Q Q, and Zhou Z H. Learning imbalanced multi-class data with optimal dichotomy weights[C]. Proceedings of the 13th IEEE International Conference on Data Mining, Dallas, USA, 2013: 478-487.
|
He H B and Edwardo A G. Learning from imbalanced Data [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
|
Maratea A, Petrosino A, and Manzo M. Adjusted F-measure and kernel scaling for imbalanced data learning[J]. Information Sciences, 2014(257): 331-341.
|
Wang S and Yao X. Multiclass imbalance problems: analysis and potential solutions[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2012, 42(4): 1119-1130.
|
Lin M, Tang K, and Yao X. Dynamic sampling approach to training neural networks for multiclass imbalance classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(4): 647-660.
|
Peng L Z, Zhang H L, Yang B, et al.. A new approach for imbalanced data classification based on data gravitation[J]. Information Sciences, 2014(288): 347-373.
|
Menardi G and Torelli N. Training and assessing classification rules with imbalanced data[J]. Data Mining and Knowledge Discovery, 2014, 28(1): 92-122.
|