Advanced Search
Volume 37 Issue 11
Nov.  2015
Turn off MathJax
Article Contents
Xu Jun-yi, An Dao-xiang, Huang Xiao-tao, Wang Guang-xue. A Novel Absolute Phase Determination Approach for Low Frequency Ultra-wideband SAR Interferometry[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2705-2712. doi: 10.11999/JEIT141334
Citation: Xu Jun-yi, An Dao-xiang, Huang Xiao-tao, Wang Guang-xue. A Novel Absolute Phase Determination Approach for Low Frequency Ultra-wideband SAR Interferometry[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2705-2712. doi: 10.11999/JEIT141334

A Novel Absolute Phase Determination Approach for Low Frequency Ultra-wideband SAR Interferometry

doi: 10.11999/JEIT141334
Funds:

The National Natural Science Foundation of China (61571447, 61201329)

  • Received Date: 2014-10-20
  • Rev Recd Date: 2015-08-13
  • Publish Date: 2015-11-19
  • Estimation of topography for the generation of Digital Elevation Models (DEM) requires the absolute interferometric phase. However, the existing absolute phase determination methods are complicated for processing the Ultra-WideBand (UWB) Synthetic Aperture Radar Interferometry (InSAR) data. To resolve this problem, a new approach is proposed in this paper. First, to acquire the high accuracy image registration result, the registration offsets are obtained from the interpolation of the offsets of the control points. Then, based on the offsets, the interferometric phase is computed and divided into two partsthe Registration Phase (RP) and the MisRegistration Phase (MRP). The RP is derived from the registration offsets, and the MRP is dependent on the unknown misregistration. Theoretical derivations show that the MRPs are unambiguous in most high coherence areas, so MRP can be unwrapped efficiently, and its absolute phase can be obtained directly without using any auxiliary data. Finally, the absolute interferometric phase is obtained from adding the RP and the true MRP. Compared with the existing algorithms, the proposed approach has lower complexity. Experimental results on P-band UWB InSAR data prove its effectiveness.
  • loading
  • Rosen P A, Hensley S, Joughin I R, et al.. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382.
    Zhong H P, Tang J S, Zhang S, et al.. A quality-guided and local minimum discontinuity based phase unwrapping algorithm for InSAR/InSAS interferograms[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 215-219.
    Yu H, Xing M, and Bao Z. A fast phase unwrapping method for large-scale interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4240-4248.
    Liu G, Wang R, Deng Y K, et al.. A new quality map for 2-D phase unwrapping based on gray level co-occurrence matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 444-448.
    Madsen S N. On absolute phase determination techniques in SAR interferometry[C]. Proceedings SPIE Conference on Radar Sensor Technology, Orlando, 1995: 393-401.
    Bamler R and Eineder M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 151-155.
    袁志辉, 邓云凯, 李飞, 等. 改进的基于最大似然估计的多通道InSAR高程重建方法[J]. 电子与信息学报, 2013, 35(9): 2161-2167.
    Yuan Z H, Deng Y K, Li F, et al.. Improved multichannel InSAR height reconstruction method based on maximum likelihood estimation[J]. Journal of Electronics Information Technology, 2013, 35(9): 2161-2167.
    Liu H, Xing M, and Bao Z. A cluster-analysis-based noise- robust phase-unwrapping algorithm for multibaseline interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 494-504.
    Bovenga F, Giacovazzo V M, Refice A, et al.. Multichromatic analysis of InSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4790-4799.
    Bovenga F, Rana F M, Refice A, et al.. Multichromatic analysis of satellite wideband SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10): 1767-1771.
    Federal Communications Commission (FCC). Revision of part 15 of the commissions rules regarding ultra-wideband systems: First report and order[S]. 2002.
    Ulander L M H and Frolind P. Ultra-wideband SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1540-1550.
    Fr?lind P and Ulander L M H. Digital elevation map generation using VHF-band SAR data in forested areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1769-1776.
    Sansosti E, Berardino P, Manunta M, et al.. Geometrical SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2861-2870.
    Fritz T, Rossi C, Yague-Martinez N, et al.. Interferometric processing of TanDEM-X data[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 2011: 2428-2431.
    钟何平, 唐劲松, 张森. 一种基于质量引导和最小不连续合成的InSAR相位解缠算法[J]. 电子与信息学报, 2011, 33(2): 369-374.
    Zhong H P, Tang J S, and Zhang S. A combined phase unwrapping algorithm based on quality-guided and minimum discontinuity for InSAR[J]. Journal of Electronics Information Technology, 2011, 33(2): 369-374.
    Ghiglia D C and Pritt M D. Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software[M]. New York: John Wiley Sons. Inc, 1998: 151-172.
    De Zan F. Accuracy of incoherent speckle tracking for circular gaussian signals[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 264-267.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1376) PDF downloads(659) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return