Advanced Search
Volume 37 Issue 4
Apr.  2015
Turn off MathJax
Article Contents
Qian Zhi-Ming, Zhong Ping, Wang Run-Sheng. Automatic Image Annotation via Graph Regularization and Non-negative Group Sparsity[J]. Journal of Electronics & Information Technology, 2015, 37(4): 784-790. doi: 10.11999/JEIT141282
Citation: Qian Zhi-Ming, Zhong Ping, Wang Run-Sheng. Automatic Image Annotation via Graph Regularization and Non-negative Group Sparsity[J]. Journal of Electronics & Information Technology, 2015, 37(4): 784-790. doi: 10.11999/JEIT141282

Automatic Image Annotation via Graph Regularization and Non-negative Group Sparsity

doi: 10.11999/JEIT141282
  • Received Date: 2014-10-09
  • Rev Recd Date: 2014-12-30
  • Publish Date: 2015-04-19
  • Extracting an effective visual feature to uncover semantic information is an important work for designing a robust automatic image annotation system. Since different kinds of heterogeneous features (such as color, texture and shape) show different intrinsic discriminative power and the same kind of features are usually correlated for image understanding, a Graph Regularized Non-negative Group Sparsity (GRNGS) model for image annotation is proposed, which can be effectively solved by a new method of non-negative matrix factorization. This model combines graph regularization withl2,1-norm regularization, and is able to select proper group features, which can describe both visual similarities and semantic correlations when performing the task of image annotation. Experimental results reported over the Corel5K and ESP Game databases show the robust capability and good performance of the proposed method.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2320) PDF downloads(1032) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return