Advanced Search
Volume 37 Issue 6
Jun.  2015
Turn off MathJax
Article Contents
Qin Hong-xing, Xu Lei. Information Theory Based KL-Reg Point Cloud Registration[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1520-1524. doi: 10.11999/JEIT141248
Citation: Qin Hong-xing, Xu Lei. Information Theory Based KL-Reg Point Cloud Registration[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1520-1524. doi: 10.11999/JEIT141248

Information Theory Based KL-Reg Point Cloud Registration

doi: 10.11999/JEIT141248
  • Received Date: 2014-09-25
  • Rev Recd Date: 2015-02-27
  • Publish Date: 2015-06-19
  • The registration of point clouds with high noises, outliers and missing data will be failure because the correspondence between point clouds is inaccurate. This paper proposes a information theory based point cloud registration method called KL-Reg algorithm without building correspondence. The method represents the point cloud with Gaussian mixture model, then computes the transformation through minimizing the KL divergence without build explicit correspondence. Experimental results show that KL-Reg algorithm is precise and stable.
  • loading
  • Zitova B and Flusser J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21(11): 977-1000.
    Lian Z, Godil A, Bustos B, et al.. A comparison of methods for non-rigid 3D shape retrieval[J]. Pattern Recognition, 2013, 46(1): 449-461.
    Liu M, Vemuri B C, Amari S I, et al.. Shape retrieval using hierarchical total bregman soft clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2407-2419.
    Besl P J and McKay N D. Method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 586-606.
    Tagliasacchi A, Bouaziz S, and Pauly M. Sparse iterative closest point[J]. Computer Graphics Forum, 2013, 32(5): 113-123.
    Tam G K L, Cheng Z Q, Lai Y K, et al.. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7): 1199-1217.
    Jian B and Vemuri B C. Robust point set registration using gaussian mixture models[J]. IEEE Transactions on Pattern
    Analysis and Machine Intelligence, 2011, 33(8): 1633-1645.
    Myronenko A and Song X. Point set registration: coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.
    Tsin Y and Kanade T. A correlation-based approach to robust point set registration[C]. Computer Vision-ECCV 2004. Springer Berlin Heidelberg, Prague, 2004: 558-569.
    Granger S and Pennec X. Multi-scale EM-ICP: a fast and robust approach for surface registration[C]. Computer VisionECCV 2002, Springer Berlin Heidelberg, Copenhagen, 2002: 418-432.
    Hermans J, Smeets D, Vandermeulen D, et al.. Robust point set registration using EM-ICP with information-theoretically optimal outlier handling[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado, USA, 2011: 2465-2472.
    Lipman Y, Yagev S, Poranne R, et al.. Feature matching with bounded distortion[J]. ACM Transactions on Graphics, 2014, 33(3), DOI: 10.1145/2602142.
    Paulus S, Dupuis J, Mahlein A K, et al.. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping[J]. BMC Bioinformatics, 2013, 14(1), DOI: 10.1186/147-2105-14-238.
    Zeng Y, Wang C, Gu X, et al.. A generic deformation model for dense non-rigid surface registration: a higher-order MRF- based approach[C]. IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 2013: 3360-3367.
    Hou T and Qin H. Robust dense registration of partial nonrigid shapes[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(8): 1268-1280.
    Lombaert H, Grady L, Polimeni J R, et al.. FOCUSR: feature oriented correspondence using spectral regularization(a method for precise surface matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Australia, 2013, 35(9): 2143-2160.
    Chang W and Zwicker M. Automatic registration for articulated shapes[J]. Computer Graphics Forum, 2008, 27(5): 1459-1468.
    Bronstein M M and Kokkinos I. Scale-invariant heat kernel signatures for non-rigid shape recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, 2010: 1704-1711.
    Sun J, Ovsjanikov M, and Guibas L. A concise and provably informative multi-scale signature based on heat diffusion[J]. Computer Graphics Forum, 2009, 28(5): 1383-1392.
    Hershey J R and Olsen P A. Approximating the Kullback Leibler divergence between Gaussian mixture models[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, 2007(4): 317-320.
    Karaboga D, Gorkemli B, Ozturk C, et al.. A comprehensive survey: artificial bee colony (ABC) algorithm and applications[J]. Artificial Intelligence Review, 2014, 42(1): 21-57.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1726) PDF downloads(687) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return