Advanced Search
Volume 37 Issue 6
Jun.  2015
Turn off MathJax
Article Contents
Hou Zhi-qiang, Huang An-qi, Yu Wang-sheng, Liu Xiang. Visual Object Tracking Method Based on Local Patch Model and Model Update[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1357-1364. doi: 10.11999/JEIT141134
Citation: Hou Zhi-qiang, Huang An-qi, Yu Wang-sheng, Liu Xiang. Visual Object Tracking Method Based on Local Patch Model and Model Update[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1357-1364. doi: 10.11999/JEIT141134

Visual Object Tracking Method Based on Local Patch Model and Model Update

doi: 10.11999/JEIT141134
  • Received Date: 2014-09-01
  • Rev Recd Date: 2014-11-02
  • Publish Date: 2015-06-19
  • In order to solve the problems of appearance change, background distraction and occlusion in the object tracking, an efficient algorithm for visual tracking based on the local patch model and model update is proposed. This paper combines rough-search and precise-search to enhance the tracking precision. Firstly, it constructs the local patch model according to the initialized tracking area which includes some background areas. Secondly, the target is preliminarily located through the local exhaustive search algorithm based on the integral histogram, then the final position of the target is calculated through the local patches learning. Finally, the local patch model is updated with the retained sequence during the tracking process. This paper mainly studies the search strategy, background restraining and model update, and the experimental results show that the proposed method obtains a distinct improvement in coping with appearance change, background distraction and occlusion.
  • loading
  • Yang Han-xuan, Shao Ling, Zheng Feng, et al.. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
    Wu Yi, Lim J, and Yang M H. Online object tracking: a benchmark[C]. Proceedings of the Computer Vision and Pattern Recognition, Portland, United States, 2013: 2411-2418.
    Smeulders A W M, Chu D M, Cucchiara R, et al.. Visual tracking: an experimental survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013: DOI: 10. 1109/TPAMI. 2013. 230.
    Lu Zhang and Laurens V D M. Structure preserving object tracking[C]. Proceedings of the Computer Vision and Pattern Recognition, Portland, United States, 2013: 1838-1845.
    Comaniciu D, Ramesh V, and Meer P. Real-time tracking of non-rigid objects using mean shift[C]. Proceedings of the Computer Vision and Pattern Recognition, Hilton Head Island, United States, 2000: 142-149.
    Comaniciu D, Ramesh V, and Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
    Babenko B, Yang M H, and Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
    Wang Dong, Lu Hu-chuan, and Yang M H. Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-315.
    Adam A, Rivlin E, and Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Proceedings of the Computer Vision and Pattern Recognition, New York, United States, 2006: 798-805.
    Nejhum S, Ho J, and Yang M H. Online visual tracking with histograms and articulating blocks[J]. Computer Vision and Image Understanding, 2010, 114(8): 901-914.
    董文会, 常发亮, 李天平. 融合颜色直方图及SIFT特征的自适应分块目标跟踪方法[J]. 电子与信息学报, 2013, 35(4): 770-776.
    Dong Wen-hui, Chang Fa-liang, and Li Tian-ping. Adaptive fragments-based target tracking method fusing color histogram and SIFT features[J]. Journal of Electronics Information Technology, 2013, 35(4): 770-776.
    Wang Shu, Lu Hu-chuan, Yang Fan, et al.. Superpixel tracking[C]. Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 1323-1330.
    Yang Fan, Lu Hu-chuan, and Yang M H. Robust superpixel tracking[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1639-1651.
    Matthews I, Ishikawa T, and Baker S. The template update problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 810-815.
    Porkili F. Integral histogram: a fast way to extract histograms in cartesian spaces[C]. Proceedings of the Computer Vision and Pattern Recognition, San Diego, United States, 2005: 829-836.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1418) PDF downloads(368) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return