Advanced Search
Volume 37 Issue 6
Jun.  2015
Turn off MathJax
Article Contents
Zou Kun, Zhang Bin, Wang Xiao-wei, Lin Cheng-qing. Iterated Cognition Method for Prior Model Parameters of Bayesian Estimator[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1402-1408. doi: 10.11999/JEIT141012
Citation: Zou Kun, Zhang Bin, Wang Xiao-wei, Lin Cheng-qing. Iterated Cognition Method for Prior Model Parameters of Bayesian Estimator[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1402-1408. doi: 10.11999/JEIT141012

Iterated Cognition Method for Prior Model Parameters of Bayesian Estimator

doi: 10.11999/JEIT141012
  • Received Date: 2014-07-28
  • Rev Recd Date: 2015-02-28
  • Publish Date: 2015-06-19
  • Smart use of prior information is one of effective approaches to improve the performance of Bayesian estimator. At the design stage of Bayesian estimator, the prior model parameters must be specified, but these parameters may not be identical with parameters of environment at the applicant stage. The mismatched prior model can result to the performance degradation of Bayesian estimator. In this paper, a general framework of prior model parameters cognition based on the estimator performance is given at first. Base on the framework, for a Bayesian estimator of DC signal in WGN, the estimation performance is analyzed, and an iterated cognition method of prior model parameters is proposed. The computer simulation is used to analyze the sensitivity and robustness of the estimator under the mismatched prior model condition, and the iterated cognition procedure under different conditions. The computer simulation results show that, the feedback from the estimation performance to the prior model parameters is obtained with the cognitive method proposed in this paper, and the prior model can be matched with the current environment model after the repeated interactions between the estimator and environment.
  • loading
  • Berger J O. Statistical Decision Theory and Bayesian Analysis[M]. New York: Springer, 1985: 1-77.
    茆诗松, 汤银才. 贝叶斯统计[M]. 第2版, 北京: 中国统计出版社, 2012: 35-44.
    Mao Shi-song and Tang Yin-cai. Bayes Statistics[M]. Second Edition, Beijing: China Statistics Press, 2012: 35-44.
    Gini F and Rangaswamy M. Knowledge-based Radar Detection, Tracking, and Classification[M]. New York: Published by John Wiley Sons, Inc., 2008: 102-211.
    Moya J C and Maio A D. Experimental performance analysis of distributed targets coherent radar detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2216-2238.
    Ollila E, Tyler D E, Koivunen V, et al.. Compound Gaussian clutter modeling with an inverse Gaussian texture distribution[J]. IEEE Signal Processing Letters, 2012, 19(12): 876-879.
    Abdelaziz M E M, Chonavel T, Aissa-El-Bey A, et al.. Sea clutter texture estimation: exploiting decorrelation and cyclostationarity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 726-742.
    Sangston K J, Gini F, and Greco M S. Coherent radar target detection in heavy-tailed compound Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 64-77.
    Gao Y, Liao G, Zhu S, et al.. A persymmetric GLRT for adaptive detection in compound Gaussian clutter with random texture[J]. IEEE Signal Processing Letters, 2013, 20(6): 615-618.
    Bandiera F, Besson O, and Ricci G. Knowledge-aided covariance matrix estimation and adaptive detection in compound Gaussian noise[J]. IEEE Transaction on Signal Processing, 2010, 58(10): 5390-5396.
    Bandiera F, Besson O, and Ricci G. Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: a Bayesian approach[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5698-5708.
    Tang B, Tang J, and Peng Y N. Performance of knowledge aided space time adaptive processing[J]. IET Radar, Sonar Navigation, 2011, 5(3): 331-340.
    Greco M, Stinco P, and Gini F. Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1502-1513.
    Bandiera F, Orlando D, and Ricci G. Advanced Radar Detection Schemes under Mismatched Signal Model[M]. Synthesis Lecture on Signal Processing, New York: Morgan Claypool Publishers, 2009: 15-24.
    唐波, 张玉, 李科. 基于先验知识及其定量评估的自适应杂波抑制研究[J]. 航空学报, 2013, 34(5): 1174-1180.
    Tang Bo, Zhang Yu, and Li Ke. Adaptive clutter suppression research based on prior knowledge and its accuracy evaluation[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1174-1180.
    邹鲲, 廖桂生, 李军, 等. 基于Bayes框架的复合高斯杂波下稳健检测[J]. 电子与信息学报, 2013, 35(7): 1551-1560.
    Zou Kun, Liao Gui-sheng, Li Jun, et al.. Robust detection in compound Gaussian clutter based on Bayesian framework[J]. Journal of Electronics Information Technology, 2013, 35(7): 1551-1560.
    邹鲲, 廖桂生, 李军, 等. 非高斯杂波下知识辅助检测器敏感性分析[J]. 电子与信息学报, 2014, 36(1): 181-186.
    Zou Kun, Liao Gui-sheng, Li Jun, et al.. Sensitivity analysis of knowledge aided detector in non-Gaussian clutter[J]. Journal of Electronics Information Technology, 2014, 36(1): 181-186.
    邹鲲, 廖桂生, 李军, 等. 非高斯杂波下知识辅助检测的认知方法[J]. 电子学报, 2014, 42(6): 1047-1054.
    Zou Kun, Liao Gui-sheng, Li Jun, et al.. Cognitive method for knowledge aided detection in non-Gaussian clutter[J]. Acta Electronica Sinica, 2014, 42(6): 1047-1054.
    Haykin S. Cognitive Dynamic Systems, Perception-action Cycle Radar, and Radio[M]. Cambridge: Cambridge University Press, 2012: 201-230.
    Zhang X and Cui C. Signal detection for cognitive radar[J]. Electronics Letters, 2013, 49(8): 559-560.
    Kay S M. Fundamental of Statistical Signal Processing, Volume I: Estimation Theory[M], New Jersy: Pearson Education Inc., 1993: 360-365.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1410) PDF downloads(431) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return