Advanced Search
Volume 37 Issue 5
May  2015
Turn off MathJax
Article Contents
Lun TANG, Yu ZHOU, Youchao YANG, Guofan ZHAO, Qianbin CHEN. Virtual Network Function Dynamic Deployment Algorithm Based on Prediction for 5G Network Slicing[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2071-2078. doi: 10.11999/JEIT180894
Citation: Luo Hui-Lan, Zhong Bao-Kang, Kong Fan-Sheng. Tracking Using Weighted Block Compressed Sensing and Location Prediction[J]. Journal of Electronics & Information Technology, 2015, 37(5): 1160-1166. doi: 10.11999/JEIT140997

Tracking Using Weighted Block Compressed Sensing and Location Prediction

doi: 10.11999/JEIT140997
  • Received Date: 2014-07-25
  • Rev Recd Date: 2014-09-28
  • Publish Date: 2015-05-19
  • To reduce side effects of background information included in the outer parts of tracking rectangular boxes, a weighted block compressed sensing feature extraction method is proposed based on normalized gradient features. The compressed sensing measurement matrix is converted to a block diagonal matrix. Appropriate weights are assigned to different blocks according to the importance of the blocks. It aims to reduce the measurement matrix size, weaken background interference and simplify feature extraction. Then the extracted features are inputted into Bayesian classifier with adaptive priori probabilities, which is proposed to make full use of existing tracking results. To some extent the classifier with variable priori probabilities can predict the direction of the moving targets, and reduce the ambiguities of target candidates. Each frame classification function changes according to the results of the previous track to improve the classification accuracy. In the experiments compared with four state-of-the-art tracking algorithms on 8 commonly used tracking test sequences, the proposed target tracking algorithm has higher accuracy and stability in terms of tracking results and success rate.
  • Cited by

    Periodical cited type(20)

    1. 蔡卫红,郭旭静,李聪. 基于NFV的5G核心网络切片研究. 长沙大学学报. 2023(02): 6-11 .
    2. 蔡卫红,仇益彩,文杰斌,吕宏悦. 基于NST规范的5G网络切片计费设计. 湖南邮电职业技术学院学报. 2023(02): 13-18 .
    3. 王颖,张龙龙. 基于5G技术的化工智能园区虚拟网络功能仿真实验研究. 粘接. 2023(07): 132-136 .
    4. 惠聪. 基于流量预测的5G通信网络资源分配方法. 信息技术. 2023(07): 71-76 .
    5. 陈功平,王红. 基于雾计算及RoF-DAS架构的物联网调度系统设计. 太原学院学报(自然科学版). 2022(01): 53-58 .
    6. 李岚. 基于神经网络反馈的移动通信平台动态负载均衡算法. 大庆师范学院学报. 2022(03): 102-108 .
    7. 兰巨龙,朱棣,李丹. 面向多模态网络业务切片的虚拟网络功能资源容量智能预测方法. 通信学报. 2022(06): 143-155 .
    8. 刘春林,秦进. 面向5G网络的移动边缘计算节点部署算法设计. 计算机仿真. 2022(12): 436-439+473 .
    9. 唐伦,贺兰钦,谭颀,陈前斌. 基于深度确定性策略梯度的虚拟网络功能迁移优化算法. 电子与信息学报. 2021(02): 404-411 . 本站查看
    10. 袁泉,游伟,季新生,汤红波. 虚拟网络功能资源容量自适应调整方法. 电子与信息学报. 2021(07): 1841-1848 . 本站查看
    11. 武静雯,江凌云,刘祥军. 基于特征选择的VNF资源需求预测方法. 计算机应用研究. 2021(10): 3131-3136+3142 .
    12. 高志华,王居正,樊旻,张凌云,李国良. 基于5G网络切片在线映射算法的电力通信远程视频指挥系统设计. 内蒙古电力技术. 2021(05): 80-83 .
    13. 李锦煊,王维. 基于智能电网的5G网络切片资源优化分配模型构建及仿真. 自动化与仪器仪表. 2021(11): 36-39+44 .
    14. 黄宏程,鲍晓萌,胡敏. 边缘网络中一种VNF需求预测方法. 电讯技术. 2021(12): 1476-1483 .
    15. 纪浩,虞颖映,糜蒙. 面向健康老龄化的“5G+智慧养老”服务生态体系设计研究. 医学信息学杂志. 2021(11): 87-93 .
    16. 郭胜,孙立. SDN与NFV技术在延时敏感业务场景中的应用. 电子技术与软件工程. 2020(03): 16-18 .
    17. 陈云杰,游伟. 5G移动通信中基于安全信任的网络切片部署策略研究. 通信技术. 2020(09): 2206-2209 .
    18. 金涛伟. 共享移动互联空间离线网络短链接稳定性检测. 计算机仿真. 2020(09): 184-188 .
    19. 徐瑨,吴慧慈,陶小峰. 5G网络空间安全对抗博弈. 电子与信息学报. 2020(10): 2319-2329 . 本站查看
    20. 孙士清,彭建华,游伟,李英乐. 基于在线实例配置的服务功能链部署方法. 计算机工程. 2019(12): 71-78 .

    Other cited types(18)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1296) PDF downloads(990) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return