Advanced Search
Volume 37 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
Jiaao YU, Shirui PENG, Xiaokun CHEN, Youquan LI. Equivalent Circuit Method for Hexagonal Loop Composite Absorbing Material[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1873-1878. doi: 10.11999/JEIT171103
Citation: Wang Feng, Xiang Xin, Yi Ke-Chu, Xiong Lei. Sparse Signals Recovery Based on Latent Variable Bayesian Models[J]. Journal of Electronics & Information Technology, 2015, 37(1): 97-102. doi: 10.11999/JEIT140169

Sparse Signals Recovery Based on Latent Variable Bayesian Models

doi: 10.11999/JEIT140169
  • Received Date: 2014-01-24
  • Rev Recd Date: 2014-06-13
  • Publish Date: 2015-01-19
  • From a Bayesian perspective, the commonly used sparse recovery algorithms, including Sparse Bayesian Learning (SBL), Regularized FOCUSS (R_FOCUSS) and Log-Sum, are compared. The analysis shows that, as a special case of latent variable Bayesian models, SBL, which operates in latent variable space via type-II maximum likelihood method, can be viewed as a more general and flexible means, and offers an avenue for improvement when finding sparse solutions to underdetermined inverse problems. Numerical results demonstrate the superior performance of SBL as compared to state-of-the-art sparse methods based on type-I maximum likelihood.
  • Cited by

    Periodical cited type(7)

    1. 张聿远,闫文君,张立民. 基于多模态特征融合网络的空时分组码识别算法. 电子学报. 2023(02): 489-498 .
    2. 张聿远,闫文君,林冲,姚成柱. 利用卷积-循环神经网络的串行序列空时分组码识别方法. 信号处理. 2021(01): 19-27 .
    3. 张聿远,闫文君,张立民,张媛. 基于卷积神经网络的串行空时分组码盲识别算法. 系统工程与电子技术. 2021(11): 3360-3370 .
    4. 闫文君,张聿远,凌青,于柯远,谭凯文,刘恒燕. 基于频域互相关序列与峰值检测的空频分组码盲识别算法. 系统工程与电子技术. 2021(12): 3709-3715 .
    5. 张天骐,范聪聪,喻盛琪,赵健根. 基于JADE与特征提取的正交/非正交空时分组码盲识别. 系统工程与电子技术. 2020(04): 933-939 .
    6. 方伟,闫文君,凌青,张立民. 传输损耗条件下基于循环平稳检测的空时分组码盲识别方法. 计算机与现代化. 2018(02): 6-11 .
    7. 黄波,潘爽,李雪. 基于四阶循环平稳的STBC-OFDM信号盲识别. 信号处理. 2017(09): 1221-1229 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2412) PDF downloads(1323) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return