Advanced Search
Volume 37 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
Jiang Yu-Wen, Tan Le-Yi, Wang Shou-Jue. Saliency Detected Model Based on Selective Edges Prior[J]. Journal of Electronics & Information Technology, 2015, 37(1): 130-136. doi: 10.11999/JEIT140119
Citation: Jiang Yu-Wen, Tan Le-Yi, Wang Shou-Jue. Saliency Detected Model Based on Selective Edges Prior[J]. Journal of Electronics & Information Technology, 2015, 37(1): 130-136. doi: 10.11999/JEIT140119

Saliency Detected Model Based on Selective Edges Prior

doi: 10.11999/JEIT140119
  • Received Date: 2014-01-20
  • Rev Recd Date: 2014-06-13
  • Publish Date: 2015-01-19
  • In the field of saliency detection, background prior has become a novel viewpoint, but how to identify the real background is challenging. In this paper, a background-identified method is proposed based on homology continuity using the extracted background features, and the identified background is applied to the following computation, improving the eventual saliency map in accuracy as well as correctness. First, the primary saliency of each superpixel produced by Mean Shift (MS) segmentation algorithm is calculated. Second, 4 edges are extracted to generate their RGB histograms, and the Euclidean distance between each two of the histograms is calculated, if the distance is smaller than a given value, these two edges are defined to be continual and more likely to be the real background. Finally, the pixels saliency is calculated using the prior background knowledge to figure the final saliency map. The results show that the proposed method outperforms other algorithms in accuracy and efficiency.
  • Cited by

    Periodical cited type(20)

    1. 周晨,周乾伟,陈翰墨,管秋,胡海根,吴延壮. 面向RGBD图像显著性检测的循环逐尺度融合网络. 小型微型计算机系统. 2023(10): 2276-2283 .
    2. 叶海峰,赵玉琛. 视觉位置识别中代表地点的标识牌算法. 小型微型计算机系统. 2021(04): 823-828 .
    3. 王慧玲,宋鑫怡,杨颖. 基于优化查询的改进显著性检测算法. 吉林大学学报(信息科学版). 2020(03): 319-324 .
    4. 郭迎春,李卓. 基于边缘特征和自适应融合的视频显著性检测. 河北工业大学学报. 2019(01): 1-7 .
    5. 鲁文超,段先华,徐丹,王万耀. 基于多尺度下凸包改进的贝叶斯模型显著性检测算法. 计算机科学. 2019(06): 295-300 .
    6. 王宝艳,张铁,李凯,杜松林. DEL分割算法对SSLS算法的改进. 小型微型计算机系统. 2019(10): 2052-2057 .
    7. 张巧荣,徐国愚,张俊峰. 利用视觉显著性的前景目标分割. 兰州大学学报(自然科学版). 2019(06): 833-840 .
    8. 杨俊丰,林亚平,欧博,蒋军强,李强. 基于显著性加权随机优化的快速响应码美化方法. 电子与信息学报. 2018(02): 289-297 . 本站查看
    9. 邓晨,谢林柏. 全局对比和背景先验驱动的显著目标检测. 计算机工程与应用. 2018(03): 212-216 .
    10. 刘亚宁,吴清,魏雪. 基于流行排序的前景背景显著性检测算法. 科学技术与工程. 2018(18): 74-81 .
    11. 闫钧华,肖勇旗,姜惠华,杨勇,张寅. 融合区域像素显著性和时域信息的地面动目标检测及其DSP实现. 电子设计工程. 2018(19): 178-183+193 .
    12. 陈厚仁,蔡延光. 基于视频的干线交通流检测系统的研究与实现. 工业控制计算机. 2017(07): 85-87 .
    13. 赵艳艳,沈西挺. 基于同步更新的背景检测显著性优化. 计算机工程. 2017(10): 264-267 .
    14. 田畅,姜青竹,吴泽民,刘涛,胡磊. 基于区域协方差的视频显著度局部空时优化模型. 电子与信息学报. 2016(07): 1586-1593 . 本站查看
    15. 罗会兰,万成涛,孔繁胜. 基于KL散度及多尺度融合的显著性区域检测算法. 电子与信息学报. 2016(07): 1594-1601 . 本站查看
    16. 张晴,林家骏,戴蒙. 基于图的流行排序的显著目标检测改进算法. 计算机工程与应用. 2016(22): 26-32+38 .
    17. 杜永强. 过度曝光图像缺失信息修复算法. 科技通报. 2016(08): 146-149 .
    18. 郎波,樊一娜,黄静. 利用混合高斯进行物体成分拟合匹配的算法. 科学技术与工程. 2016(20): 73-80 .
    19. 项导,侯赛辉,王子磊. 基于背景学习的显著物体检测. 中国图象图形学报. 2016(12): 1634-1643 .
    20. 吕建勇,唐振民. 一种基于图的流形排序的显著性目标检测改进方法. 电子与信息学报. 2015(11): 2555-2563 . 本站查看

    Other cited types(21)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2080) PDF downloads(1151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return