Advanced Search
Volume 40 Issue 8
Aug.  2018
Turn off MathJax
Article Contents
Xiaoqiang ZHAO, Xiaoli LIU. An Improved Spectral Clustering Algorithm Based on Axiomatic Fuzzy Set[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1904-1910. doi: 10.11999/IEIT170904
Citation: Xiaoqiang ZHAO, Xiaoli LIU. An Improved Spectral Clustering Algorithm Based on Axiomatic Fuzzy Set[J]. Journal of Electronics & Information Technology, 2018, 40(8): 1904-1910. doi: 10.11999/IEIT170904

An Improved Spectral Clustering Algorithm Based on Axiomatic Fuzzy Set

doi: 10.11999/IEIT170904
Funds:  The National Natural Science Foundation of China (61763029), The Gansu Province Basic Research Innovation Group Fund (1506RJIA031)
  • Received Date: 2017-09-25
  • Rev Recd Date: 2018-05-02
  • Available Online: 2018-05-30
  • Publish Date: 2018-08-01
  • Gaussian kernel is usually used as the similarity measure in spectral clustering algorithm, and all the available features are used to construct the similarity matrix with Euclidean distance. The complexity of the data set would affect its spectral clustering performance. Therefore, an improved spectral clustering algorithm based on Axiomatic Fuzzy Set (AFS) is proposed. Firstly, AFS algorithm is combined to measure the similarity of more suitable data by recognizing features, and the stronger affinity matrix is generated. Then Nyström sampling algorithm is used to calculate the similarity matrix between the sampling points and the sampling points and the remaining points to reduce the computational complexity. Finally, the experiment is carried out by using different data sets and image segmentations, the effectiveness of the proposed algorithm are proved.
  • loading
  • JAIN A. Data clustering: a review[J]. ACM Computing Surveys, 1999, 31(3): 264–323. DOI: 10.1145/331499.331504
    XU Rui. Survey of Clustering Algorithms[M]. New Jersey: IEEE Press, 2005: 645–678. doi: 10.1109/TNN.2005.845141.
    RAMON-GONEN R and GELBARD R. Cluster evolution analysis: Identification and detection of similar clusters and migration patterns[J]. Expert Systems with Applications, 2017, 83: 363-378. DOI: 10.1016/j.eswa.2017.04.007.
    WITTEN I H and FRANK E. Data Mining: Practical Machine Learning Tools and Techniques[M]. Massachusetts: Morgan Kaufmann, 2005: 81–82. doi: 0120884070, 9780120884070.
    夏平, 任强, 吴涛, 等.融合多尺度统计信息模糊C均值聚类与Markov随机场的小波域声纳图像分割[J]. 兵工学报, 2017, 38(5): 940-948. DOI: 10.3969/j.issn.1000-1093.2017.05.014.

    XIA Ping, REN Qiang, WU Tao, et al. Sonar image segmentation fusion of multi-scale statistical information FCM clustering and MRF model in wavelet domain[J]. Acta Armamentaria, 2017, 38(5): 940-948. DOI: 10.3969/j.issn.1000-1093.2017.05.014.
    TREVOR H, ROBERT T, and FRIEDMAN J J H. The Elements of Statistical Learning[M]. New York: Springer, 2001: 460–514. doi: 10.1198/jasa.2004.s339.
    李武, 赵娇燕, 严太山.基于平均差异度优选初始聚类中心的改进K-均值聚类算法[J]. 控制与决策, 2017, 32(4): 759-762. DOI: 10.13195/j.kzyjc.2016.0274.

    LI Wu, ZHAO Jiaoyan, and YAN Taishan. Improved K-means clustering algorithm optimizing initial clustering centers based on average difference degree[J]. Control and Decision, 2017, 32(4): 759-762. DOI: 10.13195/j.kzyjc.2016.0274.
    CHEN Weijie and GIGER M L. A fuzzy c-means (fcm) based algorithm for intensity inhomogeneity correction and segmentation of MR images[C]. IEEE International Symposium on Biomedical Imaging, Nano to Macro Marriott Crystal Gateway, Arlington, 2005, 2: 1307–1310. doi: 10.1109/ISBI.2004.1398786.
    蔡晓妍, 戴冠中, 杨黎斌.谱聚类算法综述[J]. 计算机科学, 2008, 35(7): 14-18. DOI: 10.3969/j.issn.1002-137X.2008.07.004.

    CAI Xiaoyan, DAI Guanzhong, and YANG Libin. Survey on spectral clustering algorithms[J]. Computer Science, 2008, 35(7): 14-18. DOI: 10.3969/j.issn.1002-137X.2008.07.004.
    ZELNIK-MANOR L and PERONA P. Self-tuning spectral clustering[C]. Advances in Neural Information Processing Systems, Vancouver, 2004: 1601–1608.
    YANG Peng, ZHU Qingsheng, and HUANG Biao. Spectral clustering with density sensitive similarity function[J]. Knowledge-Based Systems, 2011, 24(5): 621-628. DOI: 10.1016/j.knosys.2011.01.009.
    JAIN A K. Data Clustering: 50 Years Beyond K-means[M]. Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2008: 651–666. doi: 10.1007/978-3-540-87479-9_3.
    ZHU Xiatian, CHEN Change Loy, and GONG Shaogang. Constructing robust affinity graphs for spectral clustering[C]. Computer Vision and Pattern Recognition. IEEE, Ohio, 2014: 1450–1457. doi: 10.1109/CVPR.2014.188.
    GONG Shaogang, CHEN Change Loy, and XIANG Tao. Security and Surveillance[M]. Visual Analysis of Humans. Springer London, 2011: 455–472. doi: 10.1007/978-0-85729-997-0_23.
    PAVAN M and PELILLO M. Dominant sets and pairwise clustering[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 29(1): 167-172. DOI: 10.1109/TPAMI.2007.10.
    丁世飞, 贾洪杰, 史忠植. 基于自适应 采样的大数据谱聚类算法[J]. 软件学报, 2014, (9): 2037-2049. DOI: 10.13328/j.cnki.jos.004643.

    DING Shifei, JIA Hongjie, and SHI Zhongzhi. Spectral clustering algorithm based on adaptive Nyström sampling for big data analysis[J]. Journal of Software, 2014, (9): 2037-2049. DOI: 10.13328/j.cnki.jos.004643.
    LIU Xiaodong and REN Yan. Novel artificial intelligent techniques via AFS theory: Feature selection, concept categorization and characteristic description [J]. Applied Soft Computing, 2010, 10(3): 793-805. DOI: 10.1016/j.asoc.2009.09.009.
    LIH Xiaodong, WANG Xianchang, and PEDRYCZ W. Fuzzy clustering with semantic interpretation[J]. Applied Soft Computing, 2015, 26: 21-30. DOI: 10.1016/j.asoc.2014.09.037.
    BELONGIE S, FOWLKES C, FAN C, et al. Spectral partitioning with indefinite kernels using the Nyström extension[C]. European Conference on Computer Vision. Springer-Verlag, Denmark, 2002: 531–542. doi: 10.1007/3-540-47977-5_35.
    WU Mingrui. A local learning approach for clustering[C]. International Conference on Neural Information Processing Systems, Hong Kong, China, 2006: 1529–1536.
    STREHL A and GHOSH J. Cluster ensembles-aknowledge reuse framework for combining multiple partitions[J]. The Journal of Machine Learning Research, 2003, 3(3): 583-617. DOI: 10.1162/153244303321897735.
    HU Zhaoling, GUO Dazhi, and SHENG Yehua Extracting textural in formation of satellite SAR image based on wavelet decomposition[J]. Journa1 of Remote Sensing, 2001, 5: 423-427.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article Metrics

    Article views (2097) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return