Citation: | WANG Zheng, MI Jinpeng, CHEN Guodong. A Review of Electronic Skin and Its Application in Clinical Diagnosis and Treatment of Traditional Chinese Medicine[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2486-2498. doi: 10.11999/JEIT250148 |
[1] |
LIU Zhi, HU Xiaonan, BO Renheng, et al. A three-dimensionally architected electronic skin mimicking human mechanosensation[J]. Science, 2024, 384(6699): 987–994. doi: 10.1126/science.adk5556.
|
[2] |
HAMMOCK M L, CHORTOS A, TEE B C K, et al. 25th anniversary article: The evolution of electronic skin (E‐Skin): A brief history, design considerations, and recent progress[J]. Advanced Materials, 2013, 25(42): 5997–6038. doi: 10.1002/adma.201302240.
|
[3] |
任秦博, 王景平, 杨立, 等. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(1): 80–94. doi: 10.11896/cldb.19100229.
REN Qinbo, WANG Jingping, YANG Li, et al. Research progress of conductive polymer composites for resistive flexible strain sensors[J]. Materials Review, 2020, 34(1): 80–94. doi: 10.11896/cldb.19100229.
|
[4] |
张嘉琰, 温良恭, 张立平, 等. 近5年可穿戴技术在中医方面的应用[J]. 世界中医药, 2022, 17(16): 2358–2365. doi: 10.3969/j.issn.1673-7202.2022.16.023.
ZHANG Jiayan, WEN Lianggong, ZHANG Liping, et al. Application of wearable technology in traditional Chinese medicine in the recent five years[J]. World Chinese Medicine, 2022, 17(16): 2358–2365. doi: 10.3969/j.issn.1673-7202.2022.16.023.
|
[5] |
https://www.gov.cn/gongbao/content/2022/content_5686029.htm.
|
[6] |
https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/gfxwj2022/202301/t20230116_184238.html.
|
[7] |
CAO Yujie, LI Ping, ZHU Yirun, et al. Artificial intelligence-enabled novel atrial fibrillation diagnosis system using 3D pulse perception flexible pressure sensor array[J]. ACS Sensors, 2025, 10(1): 272–282. doi: 10.1021/acssensors.4c02395.
|
[8] |
CHU Yuwen, LUO C H, CHUNG Y F, et al. Using an array sensor to determine differences in pulse diagnosis-Three positions and nine indicators[J]. European Journal of Integrative Medicine, 2014, 6(5): 516–523. doi: 10.1016/j.eujim.2014.04.003.
|
[9] |
SALAMA M M A and BARTNIKAS R. Determination of neural-network topology for partial discharge pulse pattern recognition[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 446–456. doi: 10.1109/72.991430.
|
[10] |
COHEN N L, PAULSEN R E, and WHITE M H. Clinical observation on the treatment of 112 cases of hypertensive disease with syndrome differentiation and classification[J]. Guiding Journal of TCM, 2006, 288(6): C1342–C1356. doi: 10.1152/ajpcell.00315.2004.
|
[11] |
LIU Zhi, ZHANG D, YAN Jingqi, et al. Classification of hyperspectral medical tongue images for tongue diagnosis[J]. Computerized Medical Imaging and Graphics, 2007, 31(8): 672–678. doi: 10.1016/j.compmedimag.2007.07.008.
|
[12] |
LEE T C, LO L C, and WU Fangchen. Traditional Chinese medicine for metabolic syndrome via TCM pattern differentiation: Tongue diagnosis for predictor[J]. Evidence-Based Complementray and Alternative Medicine, 2016, 2016: 1971295. doi: 10.1155/2016/1971295.
|
[13] |
ZHAO Mei, ZHOU Hengyu, WANG Jing, et al. A new method for identification of traditional Chinese medicine constitution based on tongue features with machine learning[J]. Technology and Health Care, 2024, 32(5): 3393–3408. doi: 10.3233/THC-240128.
|
[14] |
KIM M S, SHIN H J, and PARK Y K. Design concept of high-performance flexible tactile sensors with a robust structure[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(11): 1941–1947. doi: 10.1007/s12541-012-0256-3.
|
[15] |
YU Tong, LI Jinghua, YU Qi, et al. Knowledge graph for TCM health preservation: Design, construction, and applications[J]. Artificial Intelligence in Medicine, 2017, 77: 48–52. doi: 10.1016/j.artmed.2017.04.001.
|
[16] |
赵庭煜, 邵亮, 姬占有, 等. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 208–218. doi: 10.11896/cldb.24010212.
ZHAO Tingyu, SHAO Liang, JI Zhanyou, et al. Preparation of a highly sensitive, strongly adhesive conductive hydrogel and its application in flexible sensing[J]. Materials Review, 2025, 39(4): 208–218. doi: 10.11896/cldb.24010212.
|
[17] |
YAO Hongbin, GE Jin, WANG Changfeng, et al. Pressure sensors: A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design (Adv. Mater. 46/2013)[J]. Advanced Materials, 2013, 25(46): 6691. doi: 10.1002/adma.201370292.
|
[18] |
WANG Gaofeng, MENG Lingxian, JI Xinyi, et al. Nacre-inspired MXene-based film for highly sensitive piezoresistive sensing over a broad sensing range[J]. Bio-Design and Manufacturing, 2024, 7(4): 463–475. doi: 10.1007/s42242-024-00292-4.
|
[19] |
MENG Lei, SHAO Changyou, CUI Chen, et al. Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1628–1639. doi: 10.1021/acsami.9b19415.
|
[20] |
WEI Jingjiang, CHEN H, PAN Fei, et al. 3D-printable liquid metal-based hydrogel for use as a multifunctional epidermal sensor[J]. Nanoscale, 2025, 17(10): 5681–5688. doi: 10.1039/D4NR04997G.
|
[21] |
ADJI A, HIRATA K, HOEGLER S, et al. Noninvasive pulse waveform analysis in clinical trials: Similarity of two methods for calculating aortic systolic pressure[J]. American Journal of Hypertension, 2007, 20(8): 917–922. doi: 10.1016/j.amjhyper.2007.03.006.
|
[22] |
ZHANG Fang, SUN Gaoqi, ZHAO Rong, et al. Zwitterion-modified MXene quantum dot as a nanocarrier for traditional Chinese medicine sanguinarine delivery and its application for photothermal-chemotherapy synergistic antibacterial and wound healing[J]. Langmuir, 2024, 40(22): 11381–11389. doi: 10.1021/acs.langmuir.3c03992.
|
[23] |
NAKAGUCHI T, TAKEDA K, ISHIKAWA Y, et al. Proposal for a new noncontact method for measuring tongue moisture to assist in tongue diagnosis and development of the tongue image analyzing system, which can separately record the gloss components of the tongue[J]. Biomed Research International, 2015, 2015(1): 249609. doi: 10.1155/2015/249609.
|
[24] |
LI Sen, HUANG Jiantao, WANG Meilan, et al. Structural electronic skin for conformal tactile sensing (Adv. Sci. 33/2023)[J]. Advanced Science, 2023, 10(33): 2370227. doi: 10.1002/advs.202370227.
|
[25] |
YANG Minjin, CHUNG H, KIM Y, et al. A body-scale robotic skin using distributed multimodal sensing modules: Design, evaluation, and application[J]. IEEE Transactions on Robotics, 2025, 41: 96–109. doi: 10.1109/TRO.2024.3502204.
|
[26] |
SUN Chanming, LIU Huifang, WANG Jiaqi, et al. Flexible piezoelectric sensor based on PVDF/ZnO/MWCNT composites for human motion monitoring[J]. Organic Electronics, 2025, 144: 107290. doi: 10.1016/j.orgel.2025.107290.
|
[27] |
XUE Haoyue, JIN Jing, TAN Zhi, et al. Flexible, biodegradable ultrasonic wireless electrotherapy device based on highly self-aligned piezoelectric biofilms[J]. Science Advances, 2024, 10(22): eadn0260. doi: 10.1126/sciadv.adn0260.
|
[28] |
LIU Wanling, YE Juncheng, WANG Yanlang, et al. Multimodal antibacterial E-skin patch driven by oxidative stress for real-time wound-status monitoring and integrated treatment of chronic wounds[J]. Advanced Functional Materials, 2025, 35(22): 2424698. doi: 10.1002/adfm.202424698.
|
[29] |
NIU Li, PENG Xiao, CHEN Lijun, et al. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection[J]. Nano Energy, 2022, 97: 107168. doi: 10.1016/j.nanoen.2022.107168.
|
[30] |
YANG Peng, LIU Zhaoqi, QIN Siyao, et al. A wearable triboelectric impedance tomography system for noninvasive and dynamic imaging of biological tissues[J]. Science Advances, 2024, 10(51): eadr9139. doi: 10.1126/sciadv.adr9139.
|
[31] |
ZI Yunlong, LIN Long, WANG Jie, et al. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing[J]. Advanced Materials, 2015, 27(14): 2340–2347. doi: 10.1002/adma.201500121.
|
[32] |
OKODUWA S I R, IGIRI B E, TAGANG J I, et al. Therapeutic smart-footwear approach for management of neuropathic diabetic foot ulcers: Current challenges and focus for future perspective[J]. Medicine in Novel Technology and Devices, 2024, 23: 100311. doi: 10.1016/j.medntd.2024.100311.
|
[33] |
YANG Li, CHEN Xue, DUTTA A, et al. Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing[J]. Nature Communications, 2025, 16(1): 792. doi: 10.1038/s41467-024-55790-x.
|
[34] |
LEE K P, WANG Zhijun, ZHENG Lin, et al. Enhancing orthotic treatment for scoliosis: Development of body pressure mapping knitwear with integrated FBG sensors[J]. Sensors, 2025, 25(5): 1284. doi: 10.3390/s25051284.
|
[35] |
WANG Wenhui, WANG Sheng, LI Zimu, et al. A flexible protective electronic skin with tunable anti-impact and thermal insulation properties for potential rescue applications[J]. Journal of Materials Chemistry C, 2025, 13(3): 1146–1156. doi: 10.1039/D4TC04519J.
|
[36] |
CHEN Zhongda, SONG Jun, LU Yu, et al. Mechanical compatibility in stitch configuration and sensor adhesion for high-fidelity pulse wave monitoring[J]. Advanced Science, 2025, 12(14): 2415608. doi: 10.1002/advs.202415608.
|
[37] |
ZHANG Heyi, WANG Xin, MENG Zhaopeng, et al. Integrating large language models with knowledge graphs in traditional Chinese medicine consultation: A case study[C]. International Joint Conference on China Conference on Knowledge Graph and Semantic Computing and International Joint Conference on Knowledge Graphs, Chongqing, China, 2025: 360–366. doi: 10.1007/978-981-96-1809-5_28.
|
[38] |
TIAN Yuqi, YANG Kai, WANG Yicong, et al. Self-adaptive epidermal blood flow sensor for high-flux vascular access monitoring of hemodialysis patients[J]. NPJ Flexible Electronics, 2024, 8(1): 62. doi: 10.1038/s41528-024-00342-y.
|
[39] |
CHENG Rong, LIU Zixuan, LI Meng, et al. Peripheral nerve regeneration with 3D printed bionic double-network conductive scaffold based on GelMA/chitosan/polypyrrole[J]. International Journal of Biological Macromolecules, 2025, 304: 140746. doi: 10.1016/j.ijbiomac.2025.140746.
|
[40] |
XU Chen, WANG Yiran, ZHANG Jingyan, et al. Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics[J]. Science Advances, 2024, 10(34): eadp6094. doi: 10.1126/sciadv.adp6094.
|
[41] |
ZHANG Xingya, DAI Hongfei, JI Mengnan, et al. A flexible piezoresistive strain sensor based on AgNWs/MXene/PDMS sponge[J]. Journal of Materials Science: Materials in Electronics, 2025, 36(8): 452. doi: 10.1007/s10854-025-14494-8.
|
[42] |
ZHANG Tianxue, LUO Yimin, NI Yuting, et al. Research on vascular thrombosis detection methods based on fiber Bragg grating sensing[J]. IEEE Sensors Journal, 2025, 25(1): 489–497. doi: 10.1109/jsen.2024.3471824.
|
[43] |
ZHANG Shixin, YANG Yiyong, SUN Yuhao, et al. Artificial skin based on Visuo-tactile sensing for 3D shape reconstruction: Material, method, and evaluation[J]. Advanced Functional Materials, 2025, 35(1): 2411686. doi: 10.1002/adfm.202411686.
|
[44] |
KHALIL S F, MOHKTAR M S, and IBRAHIM F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases[J]. Sensors, 2014, 14(6): 10895–10928. doi: 10.3390/s140610895.
|
[45] |
CHEN Ming, DING Zhi, WANG Weidong, et al. High-sensitivity flexible strain sensor with the inverted pyramid microstructure array based on stress-induced regular linear cracks[J]. Journal of Electronic Materials, 2025, 54(1): 241–250. doi: 10.1007/s11664-024-11474-2.
|
[46] |
NARESH M, RAMESH M, and JADHAV A B. Optimized SVM-based model for health monitoring of joints in a multi-story 3D steel frame structure[J]. Asian Journal of Civil Engineering, 2025, 26(4): 1837–1846. doi: 10.1007/s42107-025-01293-z.
|
[47] |
YANG Ping’an, ZHAO Jingyuan, LI Rui, et al. Construction of laser-induced graphene/silver nanowire composite structures for low-strain, high-sensitivity flexible wearable strain sensors[J]. Science China Technological Sciences, 2024, 67(11): 3524–3534. doi: 10.1007/s11431-024-2789-4.
|
[48] |
GAO Fupeng, LIU Chunxiu, ZHANG Lichao, et al. Wearable and flexible electrochemical sensors for sweat analysis: A review[J]. Microsystems & Nanoengineering, 2023, 9: 1. doi: 10.1038/s41378-022-00443-6.
|
[49] |
吴恙, 张竹绿, 于彤, 等. 基于多模态的智能中医体质推荐系统构建研究[J]. 中国数字医学, 2025, 20(6): 85–91. doi: 10.3969/j.issn.1673-7571.2025.06.014.
WU Yang, ZHANG Zhulü, YU Tong, et al. Research on the construction of intelligent TCM constitution recommendation system based on multimodality[J]. China Digital Medicine, 2025, 20(6): 85–91. doi: 10.3969/j.issn.1673-7571.2025.06.014.
|
[50] |
GU Tianyu, YAN Zhuangzhi, and JIANG Jiehui. Classifying Chinese medicine constitution using multimodal deep-learning model[J]. Chinese Journal of Integrative Medicine, 2024, 30(2): 163–170. doi: 10.1007/s11655-022-3541-8.
|
[51] |
CHOI M, YANG Dongmin, and LEE K W. A development of a digital tongue diagnosis system using the tongue color analysis of the each taste region[J]. Journal of the Korea Institute of Information and Communication Engineering, 2015, 19(2): 428–434. doi: 10.6109/jkiice.2015.19.2.428.
|
[52] |
HU Hailong, LI Yaqian, ZHENG Zeyu, et al. A traditional Chinese medicine prescription recommendation model based on contrastive pre-training and hierarchical structure network[J]. Expert Systems with Applications, 2025, 268: 126318. doi: 10.1016/j.eswa.2024.126318.
|
[53] |
LEGNER C, KALWA U, PATEL V, et al. Sweat sensing in the smart wearables era: Towards integrative, multifunctional and body-compliant perspiration analysis[J]. Sensors and Actuators A: Physical, 2019, 296: 200–221. doi: 10.1016/j.sna.2019.07.020.
|
[54] |
HONG Tianzeng, XUE Jie, LI Haonan, et al. Vertical graphene/carbon nanotube/ polydimethylsiloxane composite films for multifunctional stretchable strain sensors[J]. Chemical Engineering Journal, 2025, 519: 164747. doi: 10.1016/j.cej.2025.164747.
|
[55] |
陈可居, 钟利, 张云, 等. 基于多视图舌象特征融合的中医证型辨识[J]. 计算机应用研究, 2025, 42(7): 2116–2122. doi: 10.19734/j.issn.1001-3695.2024.11.0471.
CHEN Keju, ZHONG Li, ZHANG Yun, et al. Traditional Chinese medicine syndrome identification based on multi-view tongue image feature fusion[J]. Application Research of Computers, 2025, 42(7): 2116–2122. doi: 10.19734/j.issn.1001-3695.2024.11.0471.
|
[56] |
BANDODKAR A J, JEERAPAN I, and WANG J. Wearable chemical sensors: Present challenges and future prospects[J]. ACS Sensors, 2016, 1(5): 464–482. doi: 10.1021/acssensors.6b00250.
|
[57] |
YUAN Siqing, FAN Zebin, WANG Guangji, et al. Fabrication of flexible and transparent metal mesh electrodes using surface energy-directed assembly process for touch screen panels and heaters[J]. Advanced Science, 2023, 10(34): 2304990. doi: 10.1002/advs.202304990.
|
[58] |
COOPER C B, ROOT S E, MICHALEK L, et al. Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers[J]. Science, 2023, 380(6648): 935–941. doi: 10.1126/science.adh0619.
|