| Citation: | LANG Xun, WANG Jiayi, CHEN Qiming, HE Bingbing, MAO Rukai, XIE Lei. Self-tuning Multivariate Variational Mode Decomposition[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2994-3001. doi: 10.11999/JEIT230763 | 
	                | [1] | 
					 CHEN Qiming, LANG Xun, XIE Lei, et al. Multivariate intrinsic chirp mode decomposition[J]. Signal Processing, 2021, 183: 108009. doi:  10.1016/j.sigpro.2021.108009. 
						
					 | 
			
| [2] | 
					 ZAHRA A, KANWAL N, REHMAN N U, et al. Seizure detection from EEG signals using multivariate empirical mode decomposition[J]. Computers in Biology and Medicine, 2017, 88: 132–141. doi:  10.1016/j.compbiomed.2017.07.010. 
						
					 | 
			
| [3] | 
					 HAN G, LIN B, and XU Z. Electrocardiogram signal denoising based on empirical mode decomposition technique: An overview[J]. Journal of Instrumentation, 2017, 12(3): P03010. doi:  10.1088/1748-0221/12/03/P03010. 
						
					 | 
			
| [4] | 
					 王宇红, 高志兴. 改进多维本质时间尺度分解的厂级振荡检测[J]. 控制工程, 2022, 29(10): 1835–1840. doi:  10.14107/j.cnki.kzgc.CAC2020-1557. 
					WANG Yuhong and GAO Zhixing. Plant-wide oscillation detection based on improved multivariate intrinsic time-scale decomposition[J]. Control Engineering of China, 2022, 29(10): 1835–1840. doi:  10.14107/j.cnki.kzgc.CAC2020-1557. 
						
					 | 
			
| [5] | 
					 REHMAN N U and AFTAB H. Multivariate variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2019, 67(23): 6039–6052. doi:  10.1109/TSP.2019.2951223. 
						
					 | 
			
| [6] | 
					 TANAKA T and MANDIC D P. Complex empirical mode decomposition[J]. IEEE Signal Processing Letters, 2007, 14(2): 101–104. doi:  10.1109/LSP.2006.882107. 
						
					 | 
			
| [7] | 
					 RILLING G, FLANDRIN P, GONCALVES P, et al. Bivariate empirical mode decomposition[J]. IEEE Signal Processing Letters, 2007, 14(12): 936–939. doi:  10.1109/LSP.2007.904710. 
						
					 | 
			
| [8] | 
					 REHMAN N U and MANDIC D P. Empirical mode decomposition for trivariate signals[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1059–1068. doi:  10.1109/TSP.2009.2033730. 
						
					 | 
			
| [9] | 
					 REHMAN N and MANDIC D P. Multivariate empirical mode decomposition[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466(2117): 1291–1302. doi:  10.1098/rspa.2009.0502. 
						
					 | 
			
| [10] | 
					 ASGHAR M A, KHAN M J, RIZWAN M, et al. AI inspired EEG-based spatial feature selection method using multivariate empirical mode decomposition for emotion classification[J]. Multimedia Systems, 2022, 28(4): 1275–1288. doi:  10.1007/s00530-021-00782-w. 
						
					 | 
			
| [11] | 
					 LANG Xun, ZHANG Yufeng, XIE Lei, et al. Detrending and denoising of industrial oscillation data[J]. IEEE Transactions on Industrial Informatics, 2023, 19(4): 5809–5820. doi:  10.1109/TII.2022.3188844. 
						
					 | 
			
| [12] | 
					 HUANG Guoqing, PENG Liuliu, KAREEM A, et al. Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104073. doi:  10.1016/j.jweia.2019.104073. 
						
					 | 
			
| [13] | 
					 LANG Xun, ZHENG Qian, ZHANG Zhiming, et al. Fast multivariate empirical mode decomposition[J]. IEEE Access, 2018, 6: 65521–65538. doi:  10.1109/ACCESS.2018.2877150. 
						
					 | 
			
| [14] | 
					 蔡念, 黄威威, 谢伟, 等. 基于互补自适应噪声的集合经验模式分解算法[J]. 电子与信息学报, 2015, 37(10): 2383–2389. doi:  10.11999/JEIT141632. 
					CAI Nian, HUANG Weiwei, XIE Wei, et al. Ensemble empirical mode decomposition base on complementary adaptive noises[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2383–2389. doi:  10.11999/JEIT141632. 
						
					 | 
			
| [15] | 
					 WANG Yanxue, LIU Fuyun, JIANG Zhansi, et al. Complex variational mode decomposition for signal processing applications[J]. Mechanical Systems and Signal Processing, 2017, 86: 75–85. doi:  10.1016/j.ymssp.2016.09.032. 
						
					 | 
			
| [16] | 
					 ZOSSO D, DRAGOMIRETSKIY K, BERTOZZI A L, et al. Two-dimensional compact variational mode decomposition[J]. Journal of Mathematical Imaging and Vision, 2017, 58(2): 294–320. doi:  10.1007/s10851-017-0710-z. 
						
					 | 
			
| [17] | 
					 孟明, 闫冉, 高云园, 等. 基于多元变分模态分解的脑电多域特征提取方法[J]. 传感技术学报, 2020, 33(6): 853–860. doi:  10.3969/j.issn.1004-1699.2020.06.011. 
					MENG Ming, YAN Ran, GAO Yunyuan, et al. Multi-domain feature extraction of EEG based on multivariate variational mode decomposition[J]. Chinese Journal of Sensors and Actuators, 2020, 33(6): 853–860. doi:  10.3969/j.issn.1004-1699.2020.06.011. 
						
					 | 
			
| [18] | 
					 YAN Xiaoan, LIU Ying, XU Yadong, et al. Multichannel fault diagnosis of wind turbine driving system using multivariate singular spectrum decomposition and improved Kolmogorov complexity[J]. Renewable Energy, 2021, 170: 724–748. doi:  10.1016/j.renene.2021.02.011. 
						
					 | 
			
| [19] | 
					 ZHANG Yijie, ZHANG Haoran, YANG Yang, et al. Seismic random noise separation and attenuation based on MVMD and MSSA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5908916. doi:  10.1109/TGRS.2021.3131655. 
						
					 | 
			
| [20] | 
					 CHEN Qiming, CHEN Junghui, LANG Xun, et al. Self-tuning variational mode decomposition[J]. Journal of the Franklin Institute, 2021, 358(15): 7825–7862. doi:  10.1016/j.jfranklin.2021.07.021. 
						
					 | 
			
| [21] | 
					 CHEN Shiqian, YANG Yang, PENG Zhike, et al. Adaptive chirp mode pursuit: Algorithm and applications[J]. Mechanical Systems and Signal Processing, 2019, 116: 566–584. doi:  10.1016/j.ymssp.2018.06.052. 
						
					 | 
			
| [22] | 
					 REHMAN N U and MANDIC D P. Filter bank property of multivariate empirical mode decomposition[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2421–2426. doi:  10.1109/TSP.2011.2106779. 
						
					 | 
			
| [23] | 
					 LANG Xun, ZHANG Yufeng, XIE Lei, et al. Use of fast multivariate empirical mode decomposition for oscillation monitoring in noisy process plant[J]. Industrial & Engineering Chemistry Research, 2020, 59(25): 11537–11551. doi:  10.1021/acs.iecr.9b06351. 
						
					 | 
			
| [24] | 
					 CHEN Qiming, WEN Qingsong, WU Xialai, et al. Detection and time–frequency analysis of multiple plant-wide oscillations using adaptive multivariate intrinsic chirp component decomposition[J]. Control Engineering Practice, 2023, 141: 105715. doi:  10.1016/j.conengprac.2023.105715. 
						
					 | 
			
| [25] | 
					 YU Wanke, ZHAO Chunhui, and HUANG Biao. MoniNet with concurrent analytics of temporal and spatial information for fault detection in industrial processes[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8340–8351. doi:  10.1109/TCYB.2021.3050398. 
						
					 | 
			
| [26] | 
					 LINDNER B, AURET L, and BAUER M. A systematic workflow for oscillation diagnosis using transfer entropy[J]. IEEE Transactions on Control Systems Technology, 2020, 28(3): 908–919. doi:  10.1109/TCST.2019.2896223. 
						
					 | 
			
| [27] | 
					 CHEN Qiming, LANG Xun, LU Shan, et al. Detection and root cause analysis of multiple plant-wide oscillations using multivariate nonlinear chirp mode decomposition and multivariate granger causality[J]. Computers & Chemical Engineering, 2021, 147: 107231. doi: 10.1016/j.compchemeng.   2021.107231. 
						
					 | 
			
| [28] | 
					 AFTAB M F, HOVD M, and SIVALINGAM S. Detecting non-linearity induced oscillations via the dyadic filter bank property of multivariate empirical mode decomposition[J]. Journal of Process Control, 2017, 60: 68–81. doi:  10.1016/j.jprocont.2017.08.005. 
						
					 |