Citation: | LIU Dongsheng, ZHAO Wending, LIU Zilong, ZHANG Cong, LIU Xingjie. Reconfigurable Hardware Design of Multi-lanes Number Theoretic Transform for Lattice-based Cryptography[J]. Journal of Electronics & Information Technology, 2022, 44(2): 566-572. doi: 10.11999/JEIT210114 |
[1] |
SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484–1509. doi: 10.1137/S0097539795293172
|
[2] |
ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505–510. doi: 10.1038/s41586-019-1666-5
|
[3] |
赵勇, 戚巍, 徐兵杰, 等. 量子安全技术白皮书(2020)[R]. 2020.
|
[4] |
CHEN Zhaohui, MA Yuan, CHEN Tianyu, et al. Towards efficient kyber on FPGAs: A processor for vector of polynomials[C]. The 2020 25th Asia and South Pacific Design Automation Conference, Beijing, China, 2020. doi: 10.1109/ASP-DAC47756.2020.9045459.
|
[5] |
PÖPPELMANN T and GÜNEYSU T. Towards efficient arithmetic for lattice-based cryptography on reconfigurable hardware[C]. The 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, 2012. doi: 10.1007/978-3-642-33481-8_8" target="_blank">href="http://dx.doi.org/10.1007/978-3-642-33481-8_8">10.1007/978-3-642-33481-8_8.
|
[6] |
RENTERÍA-MEJÍA C P and VELASCO-MEDINA J. Hardware design of an NTT-Based polynomial multiplier[C]. The 2014 IX Southern Conference on Programmable Logic, Buenos Aires, Argentina, 2014: 1–5. doi: 10.1109/SPL.2014.7002209.
|
[7] |
YE J H and SHIEH M D. High-performance NTT Architecture for large integer multiplication[C]. 2018 International Symposium on VLSI Design, Automation and Test, Hsinchu, China, 2018: 1–4. doi: 10.1109/VLSI-DAT.2018.8373254.
|
[8] |
ZHANG Neng, QIN Qiao, YUAN Hang, et al. NTTU: An area-efficient low-power NTT-uncoupled architecture for NTT-based multiplication[J]. IEEE Transactions on Computers, 2020, 69(4): 520–533. doi: 10.1109/TC.2019.2958334
|
[9] |
AYSU A, PATTERSON C, and SCHAUMONT P. Low-cost and area-efficient FPGA implementations of lattice-based cryptography[C]. Proceedings of 2013 IEEE International Symposium on Hardware-Oriented Security and Trust, Austin, USA, 2013.
|
[10] |
RENTERÍA-MEJÍA C R and VELASCO-MEDINA J. Lattice-based cryptoprocessor for CCA-Secure identity-based encryption[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(7): 2331–2344. doi: 10.1109/TCSI.2020.2981089
|
[11] |
FENG Xiang, LI Shuguo, and XU Sufen. RLWE-oriented high-speed polynomial multiplier utilizing multi-lane stockham NTT algorithm[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(3): 556–559. doi: 10.1109/TCSII.2019.2917621
|
[12] |
CHEN D D, MENTENS N, VERCAUTEREN F, et al. High-speed polynomial multiplication architecture for ring-LWE and SHE cryptosystems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(1): 157–166. doi: 10.1109/TCSI.2014.2350431
|
[13] |
MERT A C, KARABULUT E, OZTURK E, et al. An extensive study of flexible design methods for the number theoretic transform[J/OL]. IEEE Transactions on Computers, 2020, 1–15.
|
[14] |
LIU Dongsheng, ZHANG Cong, LIN Hui, et al. A resource-efficient and side-channel secure hardware implementation of ring-LWE cryptographic processor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(4): 1474–1483. doi: 10.1109/TCSI.2018.2883966
|
[15] |
KIM S, LEE K, CHO W, et al. Hardware architecture of a number theoretic transform for a bootstrappable RNS-based homomorphic encryption scheme[C]. The 2020 IEEE 28th Annual International Symposium on Field-Programmable Custom Computing Machines, Fayetteville, USA, 2020, 56–64. doi: 10.1109/FCCM48280.2020.00017.
|