Advanced Search
Volume 43 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
Manli WANG, Fengying MA, Changsen ZHANG. Mixed Noise Suppression Algorithm Based on Developable Local Surface of Image[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3291-3300. doi: 10.11999/JEIT201096
Citation: Manli WANG, Fengying MA, Changsen ZHANG. Mixed Noise Suppression Algorithm Based on Developable Local Surface of Image[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3291-3300. doi: 10.11999/JEIT201096

Mixed Noise Suppression Algorithm Based on Developable Local Surface of Image

doi: 10.11999/JEIT201096
Funds:  The National Natural Science Foundation of China (52074305), The Science and Technology Research in Henan Province (212102210005), The Henan Polytechnic University Photoelectric Sensing and Intelligent Measurement and Control Provincial Program Laboratory Open Fund (HELPSIMC-2020-00X)
  • Received Date: 2020-12-30
  • Rev Recd Date: 2021-05-22
  • Available Online: 2021-06-07
  • Publish Date: 2021-11-23
  • In order to meet the requirement of low resource cost and mixed noise suppression for outdoor target detection based on rotor Unmanned Aerial Vehicle (UAV), a mixed noise suppression algorithm based on Developable Local Surface (DLS) is proposed. This algorithm realizes the complementary advantages of the developable local surface algorithm and the layered noise reduction algorithm, and achieves the noise reduction effect that the neither algorithm can reach. Firstly, the developable local surface of image is used to suppress salt & pepper noise and low-density Gaussian noise in the image to obtain a preliminary denoised image. Then, the layered noise reduction in the spatial domain and the Fourier domain is carried, removing Gaussian noise and maximize the preservation of image edges, textures and other details. Finally, iteratively developable local surface and layered noise reduction to remove further residual components of mixed noise to achieve the purpose of suppressing mixed noise in target detection images. The experimental results show that the proposed algorithm has certain advantages over the other seven algorithms in removing mixed noise, and its subjective visual index and objective data index statistics are superior to those of the other seven algorithms.
  • loading
  • [1]
    张强. 基于BM3D的彩色图像混合噪声滤波算法研究[D]. [硕士论文], 吉林大学, 2019.

    ZHANG Qiang. Mixed noise filtering algorithm for color images based on BM3D[D]. [Master dissertation], Jilin University, 2019.
    [2]
    YIN Xiangrui, ZHAO Qianlong, LIU Jin, et al. Domain progressive 3D residual convolution network to improve low-dose CT imaging[J]. IEEE Transactions on Medical Imaging, 2019, 38(12): 2903–2913. doi: 10.1109/TMI.2019.2917258
    [3]
    LIU Jin, HU Yining, YANG Jian, et al. 3D feature constrained reconstruction for low-dose CT imaging[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(5): 1232–1247. doi: 10.1109/TCSVT.2016.2643009
    [4]
    CHEN Yang, SHI Luyao, FENG Qianjing, et al. Artifact suppressed dictionary learning for low-dose CT image processing[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2271–2292. doi: 10.1109/TMI.2014.2336860
    [5]
    FAN Haiyan, LI Chang, GUO Yulan, et al. Spatial–spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6196–6213. doi: 10.1109/TGRS.2018.2833473
    [6]
    ABAZARI R and LAKESTANI M. A hybrid denoising algorithm based on shearlet transform method and yaroslavsky’s filter[J]. Multimedia Tools and Applications, 2018, 77(14): 17829–17851. doi: 10.1007/s11042-018-5648-7
    [7]
    SHAHDOOSTI H R and KHAYAT O. Image denoising using sparse representation classification and non-subsampled shearlet transform[J]. Signal, Image and Video Processing, 2016, 10(6): 1081–1087. doi: 10.1007/s11760-016-0862-0
    [8]
    ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891
    [9]
    ZHANG Jing, SANG Liu, WAN Zekang, et al. Deep convolutional neural network based on multi-scale feature extraction for image denoising[C]. The IEEE International Conference on Visual Communications and Image Processing (VCIP), Macau, China, 2020: 213–216. doi: 10.1109/VCIP49819.2020.9301843.
    [10]
    RAFIQUE H. Simulation of harmonic analysis, synthesis and Gibbs effect of periodic signals[C]. The 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey, 2019: 282–287. doi: 10.1109/SSD.2019.8893281.
    [11]
    LI Wenhao, JIA Tong, CHEN Qiusheng, et al. Omnidirectional ring structured light noise filtering based on DCGAN network and autoencode[C]. The International Conference on Culture-oriented Science & Technology (ICCST), Beijing, China, 2020: 452–456. doi: 10.1109/ICCST50977.2020.00093.
    [12]
    GONG Yuanhao and SBALZARINI I F. Curvature filters efficiently reduce certain variational energies[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1786–1798. doi: 10.1109/TIP.2017.2658954
    [13]
    王满利, 田子建, 桂伟峰, 等. 基于高斯曲率优化和非下采样剪切波变换的高密度混合噪声去除算法[J]. 光子学报, 2019, 48(9): 0910003. doi: 10.3788/gzxb20194809.0910003

    WANG Manli, TIAN Zijian, GUI Weifeng, et al. High density mixed noise removal algorithm based on gaussian curvature optimization and non-subsampled shearlet transform[J]. Acta Photonica Sinica, 2019, 48(9): 0910003. doi: 10.3788/gzxb20194809.0910003
    [14]
    王满利, 田子建, 张元刚. 曲率差分驱动的极小曲面滤波器[J]. 电子与信息学报, 2020, 42(3): 764–771. doi: 10.11999/JEIT190216

    WANG Manli, TIAN Zijian, and ZHANG Yuangang. Minimal surface filter driven by curvature difference[J]. Journal of Electronics &Information Technology, 2020, 42(3): 764–771. doi: 10.11999/JEIT190216
    [15]
    汤成, 许建龙, 周志光. 改进的曲率滤波强噪声图像去噪方法[J]. 中国图象图形学报, 2019, 24(3): 346–356. doi: 10.11834/jig.180302

    TANG Cheng, XU Jianlong, and ZHOU Zhiguang. Strong noise image-denoising algorithm based on improved curvature filters[J]. Journal of Image and Graphics, 2019, 24(3): 346–356. doi: 10.11834/jig.180302
    [16]
    XU Zhiya, DAI Tao, NIU Li, et al. Sure-based dual domain image denoising[C]. The IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 1418–1422. doi: 10.1109/ICASSP.2018.8461324.
    [17]
    KNAUS C and ZWICKER M. Dual-domain image denoising[C]. The IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 440–444. doi: 10.1109/ICIP.2013.6738091.
    [18]
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
    [19]
    LIU Licheng, CHEN Long, CHEN C L P, et al. Weighted joint sparse representation for removing mixed noise in image[J]. IEEE Transactions on Cybernetics, 2017, 47(3): 600–611. doi: 10.1109/TCYB.2016.2521428
    [20]
    LIU Yinghui, GAO Kun, and NI Guoqiang. An improved trilateral filter for Gaussian and impulse noise removal[C]. The 2nd International Conference on Industrial Mechatronics and Automation, Wuhan, China, 2010: 385–388. doi: 10.1109/ICINDMA.2010.5538290.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (1012) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return