Citation: | Yang WANG, Jian CUI, Xi LIAO, Yanzhi ZENG, Jie ZHANG. Research on Optical Wireless Orbital Angular Momentum Multiplexing System Based on Signal Detection[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3156-3165. doi: 10.11999/JEIT200955 |
[1] |
郭忠义, 龚超凡, 刘洪郡, 等. OAM光通信技术研究进展[J]. 光电工程, 2020, 47(3): 190593. doi: 10.12086/OEE.2020.190593
GUO Zhongyi, GONG Chaofan, LIU Hongjun, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 2020, 47(3): 190593. doi: 10.12086/OEE.2020.190593
|
[2] |
ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PHYSREVA.45.8185
|
[3] |
GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448
|
[4] |
WANG Jian, YANG J Y, FAZAL I M, et al. Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signals over multiple orbital-angular-momentum modes[C]. 2011 37th European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 2011: 1–3.
|
[5] |
HUANG Hao, REN Yongxiong, YAN Yan, et al. Performance analysis of spectrally efficient free-space data link using spatially multiplexed orbital angular momentum beams[C]. SPIE 8647, Next-Generation Optical Communication: Components, Sub-Systems, and Systems II, San Francisco, USA, 2013: 864706.
|
[6] |
WANG Jian, LI Shuhui, LI Chao, et al. Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over Pol-Muxed 22 orbital angular momentum (OAM) modes[C]. OFC 2014, San Francisco, USA, 2014: 1–3.
|
[7] |
CHEN Rui, ZHOU Hong, MORETTI M, et al. Orbital angular momentum waves: Generation, detection, and emerging applications[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 840–868. doi: 10.1109/COMST.2019.2952453
|
[8] |
廖希, 周晨虹, 王洋, 等. 面向无线通信的轨道角动量关键技术研究进展[J]. 电子与信息学报, 2020, 42(7): 1666–1677. doi: 10.11999/JEIT190372
LIAO Xi, ZHOU Chenhong, WANG Yang, et al. A survey of orbital angular momentum in wireless communication[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1666–1677. doi: 10.11999/JEIT190372
|
[9] |
邹丽, 王乐, 张士兵, 等. 基于波前校正的轨道角动量复用通信系统抗干扰研究[J]. 通信学报, 2015, 36(10): 76–84. doi: 10.11959/j.issn.1000-436x.2015264
ZOU Li, WANG Le, ZHANG Shibing, et al. Compensation of orbital-angular-momentum multiplexed communication system with wavefront correction[J]. Journal on Communications, 2015, 36(10): 76–84. doi: 10.11959/j.issn.1000-436x.2015264
|
[10] |
ZOU Li, WANG Le, ZHAO Shengmei, et al. Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system[J]. Chinese Physics B, 2016, 25(11): 114215. doi: 10.1088/1674-1056/25/11/114215
|
[11] |
ZHAO Shengmei, WANG Le, ZOU Li, et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing[J]. Optics Communications, 2016, 376: 92–98. doi: 10.1016/J.OPTCOM.2016.04.075
|
[12] |
ZOU Li, WANG Le, and ZHAO Shengmei. Turbulence mitigation scheme based on spatial diversity in orbital-angular-momentum multiplexed system[J]. Optics Communications, 2017, 400: 123–127. doi: 10.1016/J.OPTCOM.2017.05.022
|
[13] |
ZHANG Yan, WANG Ping, GUO Lixin, et al. Performance analysis of an OAM multiplexing-based MIMO FSO system over atmospheric turbulence using space-time coding with channel estimation[J]. Optics Express, 2017, 25(17): 19995–20011. doi: 10.1364/OE.25.019995
|
[14] |
YOUSIF B B and ELSAYED E E. Performance enhancement of an orbital-angular-momentum-multiplexed free-space optical link under atmospheric turbulence effects using spatial-mode multiplexing and hybrid diversity based on adaptive MIMO equalization[J]. IEEE Access, 2019, 7: 84401–84412. doi: 10.1109/ACCESS.2019.2924531
|
[15] |
WANG Lei, JIANG Fa, CHEN Mingkai, et al. Interference mitigation based on optimal modes selection strategy and CMA-MIMO equalization for OAM-MIMO communications[J]. IEEE Access, 2018, 6: 69850–69859. doi: 10.1109/ACCESS.2018.2880988
|
[16] |
DEDO M I, WANG Zikun, GUO Kai, et al. Retrieving performances of vortex beams with GS algorithm after transmitting in different types of turbulences[J]. Applied Sciences, 2019, 9(11): 2269. doi: 10.3390/app9112269
|
[17] |
AMHOUD E M, TRICHILI A, OOI B S, et al. OAM mode selection and space-time coding for atmospheric turbulence mitigation in FSO communication[J]. IEEE Access, 2019, 7: 88049–88057. doi: 10.1109/ACCESS.2019.2925680
|
[18] |
SONG Haoqian, SONG Hao, ZHANG Runzhou, et al. Experimental mitigation of atmospheric turbulence effect using pre-signal combining for Uni- and Bi-directional free-space optical links with two 100-Gbit/s OAM-multiplexed channels[J]. Journal of Lightwave Technology, 2020, 38(1): 82–89. doi: 10.1109/JLT.2019.2933460
|
[19] |
VASNETSOV M V, PAS'KO V A, and SOSKIN M S. Analysis of orbital angular momentum of a misaligned optical beam[J]. New Journal of Physics, 2005, 7(1): 46. doi: 10.1088/1367-2630/7/1/046
|
[20] |
黎芳, 江月松, 唐华, 等. 光束偏移对轨道角动量信息传输系统的影响[J]. 物理学报, 2009, 58(9): 6202–6209. doi: 10.7498/APS.58.6202
LI Fang, JIANG Yuesong, TANG Hua, et al. Influences of misaligned optical beam carrying orbital angular momentum on the information transfer[J]. Acta Physica Sinica, 2009, 58(9): 6202–6209. doi: 10.7498/APS.58.6202
|
[21] |
KHALIGHI M A and UYSAL M. Survey on free space optical communication: A communication theory perspective[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4): 2231–2258. doi: 10.1109/COMST.2014.2329501
|
[22] |
张明明. 离轴涡旋光束的传输特性研究[D]. [硕士论文], 南京理工大学, 2014. doi: 10.7666/d.Y2520561.
ZHANG Mingming. Study on the propagation characteristics of off-axis vortex beams[D]. [Master dissertation] Nanjing University of Science and Technology, 2014. doi: 10.7666/d.Y2520561.
|
[23] |
BRIANTCEV D, TRICHILI A, OOI B S, et al. Crosstalk suppression in structured light free-space optical communication[J]. IEEE Open Journal of the Communications Society, 2020, 1: 1623–1631. doi: 10.1109/OJCOMS.2020.3029116
|
[24] |
LOU Hanqiong, GE Xiaohu, and LI Qiang. The new purity and capacity models for the OAM-mmWave communication systems under atmospheric turbulence[J]. IEEE Access, 2019, 7: 129988–129996. doi: 10.1109/ACCESS.2019.2940691
|
[25] |
HAZAN T and SHASHUA A. Norm-product belief propagation: Primal-dual message-passing for approximate inference[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6294–6316. doi: 10.1109/TIT.2010.2079014
|
[26] |
WEISS Y, YANOVER C, and MELTZER T. MAP estimation, linear programming and belief propagation with convex free energies[J]. arXiv: 1206.5286, 2012.
|