Citation: | Jingjing ZONG, Tianshuang QIU, Guangwen ZHU. A PET-CT Lung Tumor Segmentation Method Based on Active Contour Model[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3496-3504. doi: 10.11999/JEIT200891 |
[1] |
COSMA L, SOLLAKU S, FRANTELLIZZI V, et al. Early 18F-FDG PET/CT in COVID-19[J]. Journal of Medical Imaging and Radiation Oncology, 2020, 64(5): 671–673. doi: 10.1111/1754-9485.13099
|
[2] |
SONG Yang, CAI Weidong, and FENG D D. Global context inference for adaptive abnormality detection in PET-CT images[C]. Proceedings of the 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, 2012: 482–485. doi: 10.1109/ISBI.2012.6235589.
|
[3] |
DONG Yunyun, YANG Wenkai, WANG Jiawen, et al. An improved supervoxel 3D region growing method based on PET/CT multimodal data for segmentation and reconstruction of GGNs[J]. Multimedia Tools and Applications, 2020, 79(3): 2309–2338. doi: 10.1007/s11042-019-08250-4
|
[4] |
JU Wei, XIANG Deihui, ZHANG Bin, et al. Random walk and graph cut for Co-segmentation of lung tumor on PET-CT images[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5854–5867. doi: 10.1109/TIP.2015.2488902
|
[5] |
LIAN Chunfeng, RUAN Su, DENŒUX T, et al. Joint tumor segmentation in PET-CT images using co-clustering and fusion based on belief functions[J]. IEEE Transactions on Image Processing, 2019, 28(2): 755–766. doi: 10.1109/TIP.2018.2872908
|
[6] |
LI Laquan, LU Wei, TAN Yihua, et al. Variational PET/CT tumor co-segmentation integrated with PET restoration[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 4(1): 37–49. doi: 10.1109/TRPMS.2019.2911597
|
[7] |
FOSTER B, BAĞCI U, MANSOOR A, et al. A review on segmentation of positron emission tomography images[J]. Computers in Biology and Medicine, 2014, 50: 76–96. doi: 10.1016/j.compbiomed.2014.04.014
|
[8] |
LI Laquan, ZHAO Xiangming, LU Wei, et al. Deep learning for variational multimodality tumor segmentation in PET/CT[J]. Neurocomputing, 2020, 392: 277–295. doi: 10.1016/j.neucom.2018.10.099
|
[9] |
ZHAO Xiangming, LI Laquan, LU Wei, et al. Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network[J]. Physics in Medicine & Biology, 2019, 64(1): 015011. doi: 10.1088/1361-6560/aaf44b
|
[10] |
叶锋, 李婉茹, 陈家祯, 等. 基于显著性区域检测和水平集的图像快速分割算法[J]. 电子与信息学报, 2017, 39(11): 2661–2668. doi: 10.11999/JEIT170214
YE Feng, LI Wanru, CHEN Jiazhen, et al. Image fast segmentation algorithm based on saliency region detection and level set[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2661–2668. doi: 10.11999/JEIT170214
|
[11] |
SONG Yangyang, PENG Guohua, SUN Dongwei, et al. Active contours driven by Gaussian function and adaptive-scale local correntropy-based K-means clustering for fast image segmentation[J]. Signal Processing, 2020, 174: 107625. doi: 10.1016/j.sigpro.2020.107625
|
[12] |
JIN Ri and WENG Guirong. Active contour model based on improved fuzzy c-means algorithm and adaptive functions[J]. Computers & Mathematics with Applications, 2019, 78(11): 3678–3691. doi: 10.1016/j.camwa.2019.06.010
|
[13] |
GUO Lu, SHEN Shuming, HARRIS E, et al. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy[J]. PLoS One, 2014, 9(11): e112187. doi: 10.1371/journal.pone.0112187
|
[14] |
BALLANGAN C, WANG Xiuying, FULHAM M, et al. Lung tumor delineation in PET-CT images using a downhill region growing and a Gaussian mixture model[C]. Proceedings of the 18th IEEE International Conference on Image Processing, Brussels, Belgium, 2011: 2173–2176. doi: 10.1109/ICIP.2011.6116042.
|
[15] |
LI Chunming, KAO C Y, GORE J C, et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1940–1949. doi: 10.1109/TIP.2008.2002304
|
[16] |
ZONG Jingjing, QIU Tianshuang, LI Weidong, et al. Automatic ultrasound image segmentation based on local entropy and active contour model[J]. Computers & Mathematics with Applications, 2019, 78(3): 929–943. doi: 10.1016/j.camwa.2019.03.022
|
[17] |
DING Keyan, XIAO Linfang, and WENG Guirong. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation[J]. Signal Processing, 2017, 134: 224–233. doi: 10.1016/j.sigpro.2016.12.021
|