Advanced Search
Volume 42 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
Lun TANG, Xiaoyu HE, Xiao WANG, Qianbin CHEN. Deployment Algorithm of Service Function Chain Based on Transfer Actor-Critic Learning[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542
Citation: Lun TANG, Xiaoyu HE, Xiao WANG, Qianbin CHEN. Deployment Algorithm of Service Function Chain Based on Transfer Actor-Critic Learning[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2671-2679. doi: 10.11999/JEIT190542

Deployment Algorithm of Service Function Chain Based on Transfer Actor-Critic Learning

doi: 10.11999/JEIT190542
Funds:  The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M20180601)
  • Received Date: 2019-07-18
  • Rev Recd Date: 2020-03-07
  • Available Online: 2020-04-08
  • Publish Date: 2020-11-16
  • To solve the problem of high system delay caused by unreasonable resource allocation because of randomness and unpredictability of service requests in 5G network slicing, this paper proposes a deployment scheme of Service Function Chain (SFC) based on Transfer Actor-Critic (A-C) Algorithm (TACA). Firstly, an end-to-end delay minimization model is built based on Virtual Network Function (VNF) placement, and joint allocation of computing resources, link resources and fronthaul bandwidth resources, then the model is transformed into a discrete-time Markov Decision Process (MDP). Next, A-C learning algorithm is adopted in the MDP to adjust dynamically SFC deployment scheme by interacting with environment, so as to optimize the end-to-end delay. Furthermore, in order to realize and accelerate the convergence of the A-C algorithm in similar target tasks (such as the arrival rate of service requests is generally higher), the transfer A-C algorithm is adopted to utilize the SFC deployment knowledge learned from source tasks to find quickly the deployment strategy in target tasks. Simulation results show that the proposed algorithm can reduce and stabilize the queuing length of SFC packets, optimize the system end-to-end delay, and improve resource utilization.
  • loading
  • AGARWAL S, MALANDRINO F, CHIASSERINI C F, et al. VNF placement and resource allocation for the support of vertical services in 5G networks[J]. IEEE/ACM Transactions on Networking, 2019, 27(1): 433–446. doi: 10.1109/TNET.2018.2890631
    史久根, 张径, 徐皓, 等. 一种面向运营成本优化的虚拟网络功能部署和路由分配策略[J]. 电子与信息学报, 2019, 41(4): 973–979. doi: 10.11999/JEIT180522

    SHI Jiugen, ZHANG Jing, XU Hao, et al. Joint optimization of virtualized network function placement and routing allocation for operational expenditure[J]. Journal of Electronics &Information Technology, 2019, 41(4): 973–979. doi: 10.11999/JEIT180522
    LI Defang, HONG Peilin, XUE Kaiping, et al. Virtual network function placement considering resource optimization and SFC requests in cloud datacenter[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(7): 1664–1677. doi: 10.1109/TPDS.2018.2802518
    PEI Jianing, HONG Peilin, and LI Defang. Virtual network function selection and chaining based on deep learning in SDN and NFV-Enabled networks[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICCW.2018.8403657.
    CAI Yibin, WANG Ying, ZHONG Xuxia, et al. An approach to deploy service function chains in satellite networks[C]. NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, China, 2018: 1–7. doi: 10.1109/NOMS.2018.8406159.
    QU Long, ASSI C, and SHABAN K. Delay-aware scheduling and resource optimization with network function virtualization[J]. IEEE Transactions on Communications, 2016, 64(9): 3746–3758. doi: 10.1109/TCOMM.2016.2580150
    陈前斌, 杨友超, 周钰, 等. 基于随机学习的接入网服务功能链部署算法[J]. 电子与信息学报, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310

    CHEN Qianbin, YANG Youchao, ZHOU Yu, et al. Deployment algorithm of service function chain of access network based on stochastic learning[J]. Journal of Electronics &Information Technology, 2019, 41(2): 417–423. doi: 10.11999/JEIT180310
    PHAN T V, BAO N K, KIM Y, et al. Optimizing resource allocation for elastic security VNFs in the SDNFV-enabled cloud computing[C]. 2017 International Conference on Information Networking, Da Nang, Vietnam, 2017: 163–166. doi: 10.1109/ICOIN.2017.7899497.
    XIA Weiwei and SHEN Lianfeng. Joint resource allocation using evolutionary algorithms in heterogeneous mobile cloud computing networks[J]. China Communications, 2018, 15(8): 189–204. doi: 10.1109/CC.2018.8438283
    ZHU Zhengfa, PENG Jun, GU Xin, et al. Fair resource allocation for system throughput maximization in mobile edge computing[J]. IEEE Access, 2018, 6: 5332–5340. doi: 10.1109/ACCESS.2018.2790963
    MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
    MEHRAGHDAM S, KELLER M, and KARL H. Specifying and placing chains of virtual network functions[C]. The 3rd IEEE International Conference on Cloud Networking, Luxembourg, Luxembourg, 2014: 7–13. doi: 10.1109/CloudNet.2014.6968961.
    HAGHIGHI A A, HEYDARI S S, and SHAHBAZPANAHI S. MDP modeling of resource provisioning in virtualized content-delivery networks[C]. The 25th IEEE International Conference on Network Protocols, Toronto, Canada, 2017: 1–6. doi: 10.1109/ICNP.2017.8117600.
    GRONDMAN I, BUSONIU L, LOPES G A D, et al. A survey of actor-critic reinforcement learning: Standard and natural policy gradients[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) , 2012, 42(6): 1291–1307. doi: 10.1109/TSMCC.2012.2218595
    LEE D H and LEE J J. Incremental receptive field weighted actor-critic[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 62–71. doi: 10.1109/TII.2012.2209660
    LI Rongpeng, ZHAO Zhifeng, CHEN Xianfu, et al. TACT: A transfer actor-critic learning framework for energy saving in cellular radio access networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(4): 2000–2011. doi: 10.1109/TWC.2014.022014.130840
    KOUSHI A M, HU Fei, and KUMAR S. Intelligent spectrum management based on transfer actor-critic learning for rateless transmissions in cognitive radio networks[J]. IEEE Transactions on Mobile Computing, 2018, 17(5): 1204–1215. doi: 10.1109/TMC.2017.2744620
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (2647) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return