Advanced Search
Volume 41 Issue 2
Jan.  2019
Turn off MathJax
Article Contents
Yuning QIAN, Yawei CHEN, Jun SUN. Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform[J]. Journal of Electronics & Information Technology, 2019, 41(2): 324-331. doi: 10.11999/JEIT180394
Citation: Yuning QIAN, Yawei CHEN, Jun SUN. Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform[J]. Journal of Electronics & Information Technology, 2019, 41(2): 324-331. doi: 10.11999/JEIT180394

Sonar Broadband Adaptive Beamforming Based on Enhanced Keystone Transform

doi: 10.11999/JEIT180394
  • Received Date: 2018-04-26
  • Rev Recd Date: 2018-09-07
  • Available Online: 2018-09-21
  • Publish Date: 2019-02-01
  • Keystone transform is an effective broadband array signal pre-processing method, but it has a main problem of array data missing. In order to solve this problem, an enhanced Keystone transform algorithm, which combines the autoregression model with traditional Keystone transform, is proposed in this paper for sonar broadband adaptive beamforming. After phase alignment of broadband array signal using traditional Keystone transform, autoregression models for each frequency are constructed to compensate the missing array data. Then, a robust adaptive beamforming approach is utilized to obtain the target bearing results. The results of simulation studies indicate that the proposed broadband adaptive beamforming algorithm based on enhanced Keystone transform outperforms the beamforming algorithms based on traditional Keystone transform, steered minimum variance and frequency focusing.

  • loading
  • 王永良,丁前军,李荣锋. 自适应阵列处理[M]. 北京: 清华大学出版社, 2015: 1–8.

    WANG Yongliang, DING Qianjun, and LI Rongfeng. Adaptive Array Processing[M]. Beijing: Tsinghua University Press, 2015: 1–8.
    钱宇宁, 曹欣荣, 陈亚伟, 等. 被动声呐盲分离自适应-自适应波束形成算法研究[J]. 电子与信息学报, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099

    QIAN Yuning, CAO Xinrong, CHEN Yawei, et al. Research on adaptive-adaptive beamforming algorithm based on blind separation for passive sonar[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2390–2396. doi: 10.11999/JEIT170099
    YAN Chao, ZHANG Weiyu, XU Peng, et al. An improved robust adaptive beamforming based on worst-case performance optimization[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 2729–2731. doi: 10.1121/1.5014963
    LIU Wei and LANGLEY R J. An adaptive wideband beamforming structure with combined subband decomposition[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 2204–2207. doi: 10.1109/TAP.2009.2021978
    BUCRIS Y, COHEN I, and DORON M A. Bayesian focusing for coherent wideband beamforming[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(4): 1282–1296. doi: 10.1109/TASL.2011.2175384
    SOMASUNDARAM S D. Wideband robust capon beamforming for passive sonar[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 308–322. doi: 10.1109/JOE.2012.2223560
    LI Dong, ZHAN Muyang, LIU Hongqing, et al. A robust translational motion compensation method for ISAR imaging based on keystone transform and fractional fourier transform under low SNR environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2140–2156. doi: 10.1109/TAES.2017.2683599
    HUANG Penghui, XIA Xianggen, LIAO Guisheng, et al. Ground moving target imaging based on Keystone transform and coherently integrated CPF with a single-channel SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2017, 10(12): 5686–5694. doi: 10.1109/JSTARS.2017.2742580
    章建成, 苏涛, 吕倩. 基于运动参数非搜索高速机动目标检测[J]. 电子与信息学报, 2016, 38(6): 1460–1467. doi: 10.11999/JEIT151042

    ZHANG Jiancheng, SU Tao, and LÜ Qian. High-speed maneuvering target detection based on non-searching estimation of motion parameters[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1460–1467. doi: 10.11999/JEIT151042
    SUN Zhi, LI Xiaolong, YI Wei, et al. Detection of weak maneuvering target based on Keystone transform and matched filtering process[J]. Signal Processing, 2017, 140: 127–138. doi: 10.1016/j.sigpro.2017.05.013
    张宁, 汤小为, 汤俊. 基于Keystone 变换预处理的宽带波束形成方法[J]. 清华大学学报(自然科学版), 2013, 53(7): 991–994. doi: 10.16511/j.cnki.qhdxxb.2013.07.017

    ZHANG Ning, TANG Xiaowei, and TANG Jun. Broadband beamforming method based on Keystone transform pre-processing[J]. Journal of Tsinghua University(Science and Technology), 2013, 53(7): 991–994. doi: 10.16511/j.cnki.qhdxxb.2013.07.017
    ZHAO Yongbo, WANG Juan, HUANG Lei, et al. Low complexity Keystone transform without interpolation for dim moving target detection[C]. Proceedings of IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1745–1748.
    MARANDA B. Efficient digital beamforming in the frequency domain[J]. Journal of the Acoustical Society of America, 1989, 86(5): 1813–1819. doi: 10.1121/1.398614
    QIAN Yuning, YAN Ruqiang, and HU Shijie. Bearing degradation evaluation using recurrence quantification analysis and Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(11): 2599–2610. doi: 10.1109/TIM.2014.2313034
    张玲华, 郑宝玉. 随机信号处理[M]. 北京: 清华大学出版社, 2008: 97–101.

    ZHANG Linghua and ZHENG Baoyu. Stochastic Signal Processing[M]. Beijing: Tsinghua University Press, 2008: 97–101.
    GOTO S, NAKAMURA M, and UOSAKI K. Online spectral estimation of nonstationary time-series based on AR model parameter-estimation and order selection with a forgetting factor[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1519–1522. doi: 10.1109/78.388868
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (1727) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return