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Abstract: 

Objective With the rapid increase in UAV numbers and the growing complexity of airspace 

environments, Detect-and-Avoid (DAA) technology has become essential for ensuring 

airspace safety. However, the existing Detection and Avoidance Alerting Logic for 

Unmanned Aircraft Systems (DAIDALUS) algorithm, while capable of providing basic 

avoidance strategies, has limitations in handling multi-aircraft conflicts and adapting to 

dynamic, complex environments. To address these challenges, integrating the DAIDALUS 

output strategies into the action space of a Markov Decision Process (MDP) model has 

emerged as a promising approach. By incorporating an MDP framework and designing 

effective reward functions, it is possible to enhance the efficiency and cost-effectiveness of 

avoidance strategies while maintaining airspace safety, thereby better meeting the needs of 

complex airspaces. This research offers an intelligent solution for UAV avoidance in multi-

aircraft cooperative environments and provides theoretical support for the coordinated 

management of shared airspace between UAVs and manned aircraft. 

Methods The guidance logic of the DAIDALUS algorithm dynamically calculates the UAV's 

collision avoidance strategy based on the current state space. These strategies are then used 

as the action space in an MDP model to achieve autonomous collision avoidance in complex 

flight environments. The state space in the MDP model includes parameters such as the 

UAV's position, speed, and heading angle, along with dynamic factors like the relative 

position and speed of other aircraft or potential threats. The reward function is crucial for 

ensuring the UAV balances flight efficiency and safety during collision avoidance. It 

accounts for factors such as success rewards, collision penalties, proximity to target point 

rewards, and distance penalties to optimize decision-making. Additionally, the discount 

factor determines the weight of future rewards, balancing the importance of immediate 

versus future rewards. A lower discount factor typically emphasizes immediate rewards, 

leading to faster avoidance actions, while a higher discount factor encourages long-term 

flight safety and resource consumption. 

Results and Discussions The DAIDALUS algorithm calculates the UAV's collision 

avoidance strategy based on the current state space, which then serves as the action space 

in the MDP model. By defining an appropriate reward function and state transition 



probabilities, the MDP model is established to explore the impact of different discount 

factors on collision avoidance. Simulation results show that the optimal flight strategy, 

calculated through value iteration, is represented by the red trajectory (Fig.7). The UAV 

completes its flight in 203 steps, while the comparative experiment trajectory (Fig.8) 

consists of 279 steps, demonstrating a 27.2% improvement in efficiency. When the discount 

factor is set to 0.99 (Fig.9, Fig.10), the UAV selects a path that balances immediate and 

long-term safety, effectively avoiding potential collision risks. The airspace intrusion rate is 

5.8% (Fig.11, Fig.12), with the closest distance between the threat aircraft and the UAV 

being 343 meters, which meets the safety requirements for UAV operations. 

Conclusions This paper addresses the challenge of UAV collision avoidance in complex 

environments by integrating the DAIDALUS algorithm with a Markov Decision Process 

model. The proposed decision-making method enhances the DAIDALUS algorithm by using 

its guidance strategies as the action space in the MDP. The method is evaluated through 

multi-aircraft conflict simulations, and the results show that: (1) The proposed method 

improves efficiency by 27.2% over the DAIDALUS algorithm; (2) Long-term and short-

term rewards are considered by selecting a discount factor of 0.99 based on the relationship 

between the discount factor and reward values at each time step; (3) In multi-aircraft 

conflict scenarios, the UAV effectively handles various conflicts and maintains a safe 

distance from threat aircraft, with a clear airspace intrusion rate of only 5.8%. However, 

this study only considers ideal perception capabilities, and real-world flight conditions, 

including sensor noise and environmental variability, should be accounted for in future work. 
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