Advanced Search
Volume 34 Issue 2
Mar.  2012
Turn off MathJax
Article Contents
Li Jian-Feng, Zhang Xiao-Fei, Wang Fei. Quaternion Root-MUSIC Algorithm for Angle Estimation in Bistatic MIMO Radar[J]. Journal of Electronics & Information Technology, 2012, 34(2): 300-304. doi: 10.3724/SP.J.1146.2011.00612
Citation: Li Jian-Feng, Zhang Xiao-Fei, Wang Fei. Quaternion Root-MUSIC Algorithm for Angle Estimation in Bistatic MIMO Radar[J]. Journal of Electronics & Information Technology, 2012, 34(2): 300-304. doi: 10.3724/SP.J.1146.2011.00612

Quaternion Root-MUSIC Algorithm for Angle Estimation in Bistatic MIMO Radar

doi: 10.3724/SP.J.1146.2011.00612 cstr: 32379.14.SP.J.1146.2011.00612
  • Received Date: 2011-06-26
  • Rev Recd Date: 2011-10-11
  • Publish Date: 2012-02-19
  • This paper employs quaternion theory to angle estimation of collocated bistatic MIMO radar. Quaternion model is constructed from the general data model, and the quaternion Root MUltiple SIgnal Classification (Root-MUSIC) algorithm is proposed for angle estimation in bistatic MIMO radar. This algorithm estimates Direction Of Departure (DOD) and Direction Of Arrival (DOA) via Singular Value Decomposition (SVD) and Root-MUSIC. The angle estimate performance of this algorithm is better than the existing algorithm, and the complexity of the proposed algorithm is reduced very much. The simulation results verify?the effectiveness?of the algorithm.
  • loading
  • Fishler E, Haimovich A, Blum R S, et al.. MIMO radar: an idea whose time has come[C]. Proceeding of the IEEE Radar Conference, Philadelphia, PA, Apr. 2004: 71-78.[2] Li J and Stoica P. MIMO radardiversity means superiority[C]. Proc. 14th Adaptive Sensor Array Processing, Workshop (ASAP 06), Lincoln Lab, Mass, USA, Dec. 2006: 1-6,[3] Li X, Zhang Z, et al.. A study of frequency diversity MIMO radar beamforming[C]. IEEE 10th International Conference (ICSP2010), Beijing, China, 2010: 352-356.[4] Sharma R. Analysis of MIMO radar ambiguity functions and implications on clear region[C]. IEEE International Radar Conference, Washington DC, USA, May 2010: 544-548.[5] Li J, Liao G, and Griffiths H. Bistatic MIMO radar space- time adaptive processing[C]. 2011 IEEE International Radar Conference, Westin Crown Center in Kansas City, Missouri, May 2011: 498-502.[6] Wu X H, Kishk A A, and Glisson A W. MIMO-OFDM radar for direction estimation[J]. IET Radar, Sonar Navigation, 2010, 4(1): 28-36.[7] Yan H, Li J, and Liao G. Multitarget identification and localization using bistatic MIMO radar systems[J]. EURASIP Journal on Advances in Signal Processing, 2008, Article ID: 283483, 1-8.[8] Li J, Stoica P, Xu L, et al.. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12): 968-971. [9] Li J, Liao G, Ma K, and Zeng C.Waveform decorrelation for multitarget localization in bistatic MIMO radar systems[C]. 2010 IEEE International Radar Conference,Washington, May 2010: 21-24.[10] Xu L, Li J, and Stoica P. Target detection and parameter estimation for MIMO radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 927-939.[11] Chen J L, Gu H, and Su W M. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters, 2008, 44(24): 1422-1423.[12] Zhang X F and Xu D Z. Angle Estimation in MIMO radar using Reduced-dimension Capon[J]. Electronics Letters, 2010, 46(12): 860-861. [13] Zhang X F and Xu D Z. Direction of Departure (DOD) and Direction of Arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC[J]. IEEE Communications Letters, 2010, 14(12): 1161-1163.[14] Bencheikh M L, Wang Y, and He H. Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar[J]. Signal Processing, 2010, 90(9): 2723-2730.[15] Miron S, Bihan N L, and Mars J. Quaternion-music for vector-sensor array processing[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1218-1229.[16] Miron S, Bihan N L, and Mars J. High resolution vector- sensor array processing based on biquaternions[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Toulousem, France, 2006, 5: 248-251.[17] Bihan N L and Mars J. Subspace method for vector-sensor wave separation based on quaternion algebra[C]. XI European Signal Processing Conference (EUSIPCO), Toulouse, France, 2002, 9: 119-123.[18] Wang F, Wang S X, and Wu Y G. 2-D DOA estimation in the presence of Gaussian noise with quaternion[C]. Ellison, IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, MAPE, Beijing, China, IEEE Press, 2005: 8-12.[19] 汪飞, 王树勋, 陈巧霞. 基于Hamilton四元数矩阵奇异值分解的二维谐波频率参量估计[J]. 电子学报, 2007, 35(12): 2441-2445.Wang Fei, Wang Shu-xun, and Chen Qiao-xia. Parameter estimation of two-dimensional harmonic frequency based on the singular value decomposition of Hamilton quaternion matrix[J]. Acta Electronica Sinica, 2007, 35(12): 2441-2445.[20] Stoica P and Nehorai A. Performance study of conditional and unconditional direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1990, 38(10): 1783-1795.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3170) PDF downloads(878) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return