高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NM-DPoS: 基于牛顿冷却定律和修正沙普利值的DPoS优化共识算法

廖国琼 谢玉芳 邓小鸿 雷银香 丁皓 罗丹

廖国琼, 谢玉芳, 邓小鸿, 雷银香, 丁皓, 罗丹. NM-DPoS: 基于牛顿冷却定律和修正沙普利值的DPoS优化共识算法[J]. 电子与信息学报. doi: 10.11999/JEIT250069
引用本文: 廖国琼, 谢玉芳, 邓小鸿, 雷银香, 丁皓, 罗丹. NM-DPoS: 基于牛顿冷却定律和修正沙普利值的DPoS优化共识算法[J]. 电子与信息学报. doi: 10.11999/JEIT250069
LIAO Guoqiong, XIE Yufang, DENG Xiaohong, LEI Yinxiang, DING Hao, LUO Dan. NM-DPoS: Optimized DPoS Consensus Algorithm Based on Newton’s Cooling Law and Modified Shapley Value[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250069
Citation: LIAO Guoqiong, XIE Yufang, DENG Xiaohong, LEI Yinxiang, DING Hao, LUO Dan. NM-DPoS: Optimized DPoS Consensus Algorithm Based on Newton’s Cooling Law and Modified Shapley Value[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250069

NM-DPoS: 基于牛顿冷却定律和修正沙普利值的DPoS优化共识算法

doi: 10.11999/JEIT250069
基金项目: 国家自然科学基金(62272207),江西省自然科学基金(20224ACB202009)
详细信息
    作者简介:

    廖国琼:男,博士生导师,教授,研究方向为区块链、数据库

    谢玉芳:女,博士生,研究方向为区块链

    邓小鸿:男,博士,教授,研究方向为网络信息安全、区块链

    雷银香:女,博士生,研究方向为区块链、数据挖掘

    丁皓:男,博士生,研究方向为区块链

    罗丹:女,博士生,研究方向为数智文旅、区块链

    通讯作者:

    谢玉芳 1020130978@jxstnu.edu.cn

  • 中图分类号: TN915; TP309

NM-DPoS: Optimized DPoS Consensus Algorithm Based on Newton’s Cooling Law and Modified Shapley Value

Funds: The National Natural Science Foundation of China (62272207), The Natural Science Foundation of Jiangxi Province (20224ACB202009)
  • 摘要: 针对委托权益证明共识算法(DPoS)中,寡头节点造成的中心化现象、节点投票积极性不高和未投票导致的资源浪费问题,该文提出一种基于牛顿冷却定律和修正沙普利值的DPoS优化共识算法(NM-DPoS)。首先,设计基于牛顿冷却定律的衰减机制使节点的投票权重随时间逐渐衰减,但可根据投票表现获得额外的热补偿,同时,增加代理节点在连任时所需的委托权重,以降低寡头节点带来的中心化风险;其次,构建投票节点和代理节点的利益共同体,使得为代理节点投票的节点也能获得出块收益,并提出基于修正沙普利值的利益分配机制,根据投票节点的贡献度来进行合理的分配,提升节点的投票积极性;最后,设计动态分区投票机制,将节点投票区段分为正常区段和代投区段,并根据投票情况动态调整两者的区间比例,提升了整体的投票效率和避免投票资源的浪费。仿真实验表明,与DPoS算法相比,NM-DPoS的平均时延降低了32.9%,平均吞吐量提高了18.7%,且节点的投票速率提升了约36%。与其他DPoS优化算法相比,所提算法也具有明显的性能优势,能够确保区块链网络在大规模节点环境下的公平性和去中心化特性。
  • 图  1  NM-DPoS共识过程

    图  2  权重补偿

    图  3  投票区段变化

    图  4  节点代投

    图  5  节点排列情况

    图  6  吞吐量和时延对比

    图  7  区块生产占比

    图  8  投票速率对比

    图  9  恶意节点数量变化

    表  1  变量含义

    变量含义
    $ {\phi _j}(N,v) $边际贡献值
    $ n $联盟N中节点的总数量
    $ T $N中除j以外的所有节点组成的任意子集
    $ v(T \cup \{ j\} ) $j加入联盟T后的总收益
    $ v(T\} ) $联盟T中所有节点的总收益
    下载: 导出CSV
  • [1] VRANKEN H. Sustainability of bitcoin and blockchains[J]. Current Opinion in Environmental Sustainability, 2017, 28: 1–9. doi: 10.1016/j.cosust.2017.04.011.
    [2] ZHANG Weijian, DI Li, YAN Lijing, et al. When supply chain security meets blockchain: Applications and challenges[C]. Proceedings of the 5th International Conference on Blockchain and Trustworthy Systems, Haikou, China, 2023: 75–88. doi: 10.1007/978-981-99-8104-5_6.
    [3] MOOSAVI N, TAHERDOOST H, MOHAMED N, et al. Blockchain technology, structure, and applications: A survey[J]. Procedia Computer Science, 2024, 237: 645–658. doi: 10.1016/j.procs.2024.05.150.
    [4] FU Xiang, WANG Huaimin, and SHI Peichang. A survey of Blockchain consensus algorithms: Mechanism, design and applications[J]. Science China Information Sciences, 2021, 64(2): 121101. doi: 10.1007/s11432-019-2790-1.
    [5] ZHU Liehuang, BUKHARI S, SHARIF K, et al. A novel merging framework for homogeneous and heterogeneous blockchain systems[C]. Proceedings of the 18th International Conference on Wireless Artificial Intelligent Computing Systems and Applications, Qingdao, China, 2025: 304–315. doi: 10.1007/978-3-031-71467-2_25.
    [6] KIFFER L, SKORIK S, VONLANTHEN Y, et al. Short paper: The PoW landscape in the aftermath of the merge[C]. Proceedings of the 9th Workshop on Advances in Secure Electronic Voting Schemes, Willemstad, Curaçao, 2025: 281–292. doi: 10.1007/978-3-031-69231-4_18.
    [7] LIU Zijie, ZHAO Qinglin, QI Shuhan, et al. A performance study of block proposing mechanism in ethereum 2.0[C]. Proceedings of 2024 IEEE International Conference on Blockchain, Copenhagen, Denmark, 2024: 520–525. doi: 10.1109/Blockchain62396.2024.00076.
    [8] KING S and NADAL S. PPCoin: Peer-to-peer crypto-currency with proof-of-stake[EB/OL]. https://decred.org/research/king2012.pdf, 2025.
    [9] SONG Han, WEI Yihao, QU Zhongche, et al. Unveiling decentralization: A comprehensive review of technologies, comparison, challenges in bitcoin, Ethereum, and Solana Blockchain[C]. Proceedings of the 2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, China, 2024: 1896–1901. doi: 10.1109/IMCEC59810.2024.10575445.
    [10] CASTRO M and LISKOV B. Practical byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems (TOCS), 2002, 20(4): 398–461. doi: 10.1145/571637.571640.
    [11] YIN Maofan, MALKHI D, REITER M K, et al. HotStuff: BFT consensus with linearity and responsiveness[C]. Proceedings of 2019 ACM Symposium on Principles of Distributed Computing, Toronto, Canada, 2019: 347–356. doi: 10.1145/3293611.3331591.
    [12] ZHANG Zijian, LIU Xuyang, LI Meng, et al. HCA: Hashchain-based consensus acceleration via re-voting[J]. IEEE Transactions on Dependable and Secure Computing, 2024, 21(2): 775–788. doi: 10.1109/TDSC.2023.3262283.
    [13] LIU Xuyang, FENG Kaiyu, ZHANG Zijian, et al. Dolphin: Efficient non-blocking consensus via concurrent block generation[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 11824–11838. doi: 10.1109/TMC.2024.3399772.
    [14] YADAV A K, SINGH K, AMIN A H, et al. A comparative study on consensus mechanism with security threats and future scopes: Blockchain[J]. Computer Communications, 2023, 201: 102–115. doi: 10.1016/j.comcom.2023.01.018.
    [15] HU Qian, YAN Biwei, HAN Yubing, et al. An improved delegated proof of stake consensus algorithm[J]. Procedia Computer Science, 2021, 187: 341–346. doi: 10.1016/j.procs.2021.04.109.
    [16] LI Wangchun, DENG Xiaohong, LIU Juan, et al. Delegated proof of stake consensus mechanism based on community discovery and credit incentive[J]. Entropy, 2023, 25(9): 1320. doi: 10.3390/e25091320.
    [17] WANG Bing, LI Huiling, and PAN Li. Optimized DPoS consensus strategy: Credit-weighted comprehensive election[J]. Ain Shams Engineering Journal, 2023, 14(2): 101874. doi: 10.1016/j.asej.2022.101874.
    [18] LIU Jun, XIE Mingyue, CHEN Shuyu, et al. An improved DPoS consensus mechanism in blockchain based on PLTS for the smart autonomous multi-robot system[J]. Information Sciences, 2021, 575: 528–541. doi: 10.1016/j.ins.2021.06.046.
    [19] ZHAO Mingjie, DAI Cheng, and GUO Bing. Safe and efficient delegated proof of stake consensus mechanism based on dynamic credit in electronic transaction[J]. Journal of Internet Technology, 2023, 24(1): 123–13. doi: 10.53106/160792642023012401012.
    [20] MIŠIĆ J, MIŠIĆ V B, and CHANG Xiaolin. Toward decentralization in DPoS systems: Election, voting, and leader selection using virtual stake[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 1777–1790. doi: 10.1109/TNSM.2023.3322622.
    [21] XIONG Hang, QU Cheng, and LI Jing. VWeiST: A scalable and efficient proof-of-stake blockchain consensus[C]. Proceedings of 2024 ACM Symposium on Cloud Computing, Redmond, USA, 2024: 637–649. doi: 10.1145/3698038.3698550.
    [22] MARUYAMA S and MORIYA S. Newton's law of cooling: Follow up and exploration[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120544. doi: 10.1016/j.ijheatmasstransfer.2020.120544.
    [23] CHEON H and CHOI D G. Generalization of weighted-egalitarian Shapley values[J]. Operations Research Letters, 2024, 54: 107118. doi: 10.1016/j.orl.2024.107118.
    [24] MENG Fanyong, ZHAO Dengyu, and ZHANG Xumin. A fair consensus adjustment mechanism for large-scale group decision making in term of Gini coefficient[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106962. doi: 10.1016/j.engappai.2023.106962.
    [25] CHEN Yourong, CHEN Hao, ZHANG Yang, et al. A survey on blockchain systems: Attacks, defenses, and privacy preservation[J]. High-Confidence Computing, 2022, 2(2): 100048. doi: 10.1016/j.hcc.2021.100048.
    [26] YOU Cheng, QIN Yanjia, CHEN Qi, et al. HADPoS: Improvement of DPoS consensus mechanism based on heat attenuation[J]. IT Professional, 2023, 25(1): 40–51. doi: 10.1109/MITP.2022.3225429.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  37
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-12
  • 修回日期:  2025-05-13
  • 网络出版日期:  2025-05-24

目录

    /

    返回文章
    返回