高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于层次网络的多任务学习鱼道水位预测方法

苏新 秦子健 吕嘉 秦鸣宇

苏新, 秦子健, 吕嘉, 秦鸣宇. 基于层次网络的多任务学习鱼道水位预测方法[J]. 电子与信息学报. doi: 10.11999/JEIT241003
引用本文: 苏新, 秦子健, 吕嘉, 秦鸣宇. 基于层次网络的多任务学习鱼道水位预测方法[J]. 电子与信息学报. doi: 10.11999/JEIT241003
SU Xin, QIN Zijian, JIA Lv, QIN Mingyu. Hierarchical Network-Based Multi-Task Learning Method for Fishway Water Level Prediction[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241003
Citation: SU Xin, QIN Zijian, JIA Lv, QIN Mingyu. Hierarchical Network-Based Multi-Task Learning Method for Fishway Water Level Prediction[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241003

基于层次网络的多任务学习鱼道水位预测方法

doi: 10.11999/JEIT241003
基金项目: 国家自然科学基金(62371181),常州市政策引导类计划(CZ20230029)
详细信息
    作者简介:

    苏新:男,教授,研究方向为通信与计算融合、移动通信技术、边缘/雾计算、智慧海洋、时间序列分析等

    秦子健:男,硕士生,研究方向为时间序列数据分析、多源异构数据融合、边缘/雾计算、智慧海洋等

    吕嘉:男,讲师,研究方向为时间序列分析、边缘/雾计算、智慧海洋、物联网与软件工程等

    秦鸣宇:女,硕士生,研究方向为时间序列分析、移动通信、边缘/雾计算、智慧海洋等

    通讯作者:

    吕嘉 lvjia@hhu.edu.cn

  • 中图分类号: TN929.52

Hierarchical Network-Based Multi-Task Learning Method for Fishway Water Level Prediction

Funds: The National Natural Science Foundation of China (62371181), Changzhou Science and Technology International Cooperation Program (CZ20230029)
  • 摘要: 传统的鱼道(FP)监测系统为鱼类迁徙研究和水生生态保护提供了基础数据,但仍面临诸如数据处理繁琐、监测覆盖范围有限以及易受环境因素干扰等问题。为此,该文提出层次网络鱼道监测系统(HNFMS),旨在减轻水坝建设对鱼类迁徙的负面影响,提升鱼道的生态功能。为确保该系统的高效应用,并促进鱼道生物多样性的保护,该文进一步开发了基于辅助序列的多任务学习模型——自适应序列自组织映射变换(AS-SOMVT)。该模型用于鱼道水位的实时、多维度预测,能够有效应对复杂环境下的水位变化。仿真结果表明,所提方法相较于传统预测模型在水位预测的准确性和稳定性方面具有显著提升,能够为生态保护和鱼道水资源管理提供更为精确的支持。
  • 图  1  HNFMS

    图  2  AS-SOMVT模型框图

    图  3  AS-SOM等距映射模型

    图  4  AS-SOMVT方法与基线方法的比较

    图  5  噪声数据的鲁棒性

    图  6  AS-SOMVT方法的参数敏感性分析

    图  7  AS-SOMVT方法的层参数实验

    图  8  消融实验

    表  1  水位预测模型对比表

    模型类型:水位预测过程驱动模型
    参考文献 是否多因素 应用场景 方法论 采样周期
    [10] 贝加尔湖水位变化预测 Saint-Venant方程+连续性方程 每天 (6, 9, 12月)
    [11] 山区水位预测 砂质和卵石河床河流抗力方程 每天 (7, 8, 9月)
    [12] 马来西亚北部梁河水位变化预测 Thiessen polygons + Steven方法 每天 (1, 3, 6, 9, 12月)
    [13] 基于模拟降雨事件的城市雨洪模型 Steven方法 每天 (1, 3, 6月)
    [14] Shimanku河的水位预测 水文功能曲线 每天 (7, 8月)
    [15] 河口水位预测 2维水动力模型 每天 (6, 12月)
    模型类型:水位预测数据驱动模型
    [17] 水坝水位预测模型 FIS-SVN-RBFNN-GRNN 每天 (1, 3, 6, 9, 12月)
    [18] 亚速尔群岛水位预测模型 ANN + ARIMA 每天 (3, 6, 9月)
    [19] 通用水位预测模型 LSTM 每天 (1, 3, 6, 9, 12月)
    [20] 通用水位预测模型 CNN + LSTM 每天 (1, 2月)
    [21] Muda河水位预测模型 ARIMA + LSTM 每天 (10月)
    [22] 水库水位变化模型 Wavelet-Seq2Seq-LSTM + 注意力 每天 (1, 3, 6月)
    [24] 水电站水位上升预测模型 Transformer 每天 (12月)
    [25] 城市河流水坝水位预测 LSTM-Transformer 每天 (1, 3, 6, 9, 12月)
    [26] 水库水位预测模型 VMD-LSTM-Transformer 每天 (7, 8月)
    下载: 导出CSV

    1  AS-SOM 特征选择算法

     输入:水位主序列数据及其辅助序列作为算法的特征数据样本X;序列样本的特征数量为N;最近邻数p;特征数量上限$ \gamma $。
     输出:选出每个类簇中评分最大的特征作为主序列相关的D 个特征,形成特征子集。
     (1) for i = 1, 2, ··· , N do
     (2) 标准化当前时刻状态$ {{\boldsymbol{X}}_i} $,初始化p和$ \gamma $
     (3) 自组织映射聚类,将$ {{\boldsymbol{X}}_i} $输入到式(16)、式(17)和式(18)中,通过最小化DBI值生成d 个最优类簇$ {\boldsymbol{X}}_i^d $
     (4) 等距映射,将$ {\boldsymbol{X}}_i^d $代入式(19)获取最优解$ {d_{ij}} $执行降维过程。
     (5) 学习稀疏系数向量,获取一组相关的特征子集,通过最小化公式$ {{\boldsymbol{Y}}^d} $的训练损失。
     (6) if 对于$ {d_k} $维向量的$ \beta $足够大
     (7)  执行$ \begin{array}{l}\mathrm{min}\parallel {{\boldsymbol{y}}}_{k}-{{\boldsymbol{X}}}^{\text{T}}{{\boldsymbol{a}}}_{k}{\parallel }^{2}\\ \text{ s}.\text{t}.\mid {{\boldsymbol{a}}}_{k}\mid \le\gamma \end{array} $
     (8) else
     (9) 执行$ {\min _{{{\boldsymbol{a}}_k}}}\parallel {{\boldsymbol{y}}_k} - {{\boldsymbol{X}}^{\text{T}}}{{\boldsymbol{a}}_k}{\parallel ^2} + \beta |{{\boldsymbol{a}}_k}| $
     (10) end if
     (11) 使用带有基数约束$ \gamma $的算法解决$ {l_1} $正则回归问题,得到稀疏向量$ {a_k} $。
     (12) end for
     (13) for i = 1, 2,···. , d do
     (14) 式(22)对每个类簇中的特征进行FCCBI评分
     (15) 选出每个类簇中评分最大的特征作为代表特征输出相关的D 个特征,形成特征子集。
     (16) end for
    下载: 导出CSV

    表  2  采集设备具体技术方法与参数

    指标因子 单位 采样方法
    溶解氧 mg/L 荧光分析仪
    电导率 S/m 多频测量仪
    pH值 组合pH电极
    叶绿素a mg/m³ 多频测量仪
    温度 °C 电阻温度传感器
    降雨量 mm 型号01倾斗式雨量计
    水位 m 雷达水位计
    流速 m/s 转子流速计
    总流量 m³/s 超声流量计
    风速 m³/s 超声风速仪
    横截面积 雷达测距仪
    下载: 导出CSV

    表  3  数据集的详细分布

    统计数量HBS数据集2023~2024年HWS数据集2023~2024年HBS数据集2024~2025年
    因子数量555
    采样频率每天(3, 6, 9, 12月)每天(7, 8, 9月)每天(3, 6, 9, 12月)
    训练集数量8 6575 3409 143
    测试集数量2 1651 3342 286
    总计10 8226 67411 429
    下载: 导出CSV

    表  4  基准模型和AS-SOMVT方法数据对比

    数据集方法MAERMSER²
    HBS数据集
    2023~2024年
    ARIMA-RNN0.102 30.121 00.939 8
    LSTM0.098 20.105 30.958 1
    CNN-LSTM0.081 90.093 20.961 4
    Transformer0.072 10.080 10.979 2
    CNN-Transformer0.062 90.079 10.980 1
    AS-SOMVT0.052 10.064 50.991 1
    HWS数据集
    2023~2024年
    ARIMA-RNN0.121 30.138 90.917 2
    LSTM0.097 20.112 30.951 4
    CNN-LSTM0.087 20.101 10.960 1
    Transformer0.075 40.083 20.975 1
    CNN-Transformer0.063 50.082 20.979 1
    AS-SOMVT0.057 90.074 60.989 1
    HBS数据集
    2024~2025年
    ARIMA-RNN0.115 80.129 60.925 3
    LSTM0.092 70.106 80.956 7
    CNN-LSTM0.084 30.095 40.962 8
    Transformer0.073 20.081 90.978 3
    CNN-Transformer0.061 80.077 40.981 5
    AS-SOMVT0.054 30.068 70.990 4
    下载: 导出CSV
  • [1] TAN Junjun, SUN Junjian, WANG Yuanyang, et al. Fish community dynamics following the low-head dam removal and newly installed fish passage in a headstream tributary of Jinsha River, Southwest China[J]. Science of the Total Environment, 2024, 954: 176774. doi: 10.1016/j.scitotenv.2024.176774.
    [2] MARSDEN T, BAUMGARTNER L J, DUFFY D, et al. Evaluation of a new practical low-cost method for prioritising the remediation of fish passage barriers in resource-deficient settings[J]. Ecological Engineering, 2023, 194: 107024. doi: 10.1016/j.ecoleng.2023.107024.
    [3] CHAUDHARY P, LEITÃO J P, SCHINDLER K, et al. Flood water depth prediction with convolutional temporal attention networks[J]. Water, 2024, 16(9): 1286. doi: 10.3390/w16091286.
    [4] WAJID M, ABID M K, RAZA A A, et al. Flood prediction system using IOT & artificial neural network[J]. VFAST Transactions on Software Engineering, 2024, 12(1): 210–224. doi: 10.21015/vtse.v12i1.1603.
    [5] 徐增熠, 牛文清, 陈慧, 等. 非线性编码叠加调制的两发一收可见光通信系统研究[J]. 物联网学报, 2022, 6(3): 14–22. doi: 10.11959/j.issn.2096-3750.2021.00275.

    XU Zengyi, NIU Wenqing, CHEN Hui, et al. Exploring the nonlinear coded superposed modulation MISO visible light communication system[J]. Chinese Journal on Internet of Things, 2022, 6(3): 14–22. doi 10.11959/j.issn.2096-3750.2021.00275.
    [6] 白卫岗, 盛敏, 杜盼盼. 6G卫星物联网移动性管理: 挑战与关键技术[J]. 物联网学报, 2020, 4(1): 104–110. doi: 10.11959/j.issn.2096-3750.2020.00149.

    BAI Weigang, SHENG Min, and DU Panpan. Mobility management of the 6G satellite IoT: Challenges and key techniques[J]. Chinese Journal on Internet of Things, 2020, 4(1): 104–110. doi: 10.11959/j.issn.2096-3750.2020.00149.
    [7] SU Xin, JIANG Su, and CHOI D. Location privacy protection of maritime mobile terminals[J]. Digital Communications and Networks, 2022, 8(6): 932–941. doi: 10.1016/j.dcan.2021.11.005.
    [8] 宋毅, 张晗奕, 孙丰, 等. PPNet: 基于预先预测的降雨短时预测模型[J]. 电子与信息学报, 2024, 46(2): 492–502. doi: 10.11999/JEIT230547.

    SONG Yi, ZHANG Hanyi, SUN Feng, et al. PPNet: A precipitation nowcasting model based on pre-prediction[J]. Journal of Electronics & Information Technology, 2024, 46(2): 492–502. doi: 10.11999/JEIT230547.
    [9] ZHANG Lincong, ZHANG Mingyang, LIU Xiangyu, et al. 6G Smart fog radio access network: Architecture, key technologies, and research challenges[J]. Digital Communications and Networks, 2024. doi: 10.1016/j.dcan.2024.10.002.
    [10] SINYUKOVICH V N, GEORGIADI A G, GROISMAN P Y, et al. The variation in the water level of lake Baikal and its relationship with the inflow and outflow[J]. Water, 2024, 16(4): 560. doi: 10.3390/w16040560.
    [11] OKHRAVI S, ALEMI M, AFZALIMEHR H, et al. Flow resistance at lowland and mountainous rivers[J]. Journal of Hydrology and Hydromechanics, 2023, 71(4): 464–474. doi: 10.2478/johh-2023-0023.
    [12] ANANDHARUBAN P, LA ROCCA M, and ELANGO L. A novel step function approach for reservoir operation to balance water storage and flood control during extreme rainfall events[J]. Journal of Hydrology, 2024: 130929. doi: 10.1016/j.jhydrol.2024.130929.
    [13] LIAO Lingxia, ZHAO Changqing, WANG Jian, et al. Accurate and efficient elephant-flow classification based on co-trained models in evolved software-defined networks[J]. Digital Communications and Networks, 2024. doi: 10.1016/j.dcan.2024.10.017.
    [14] GANORA D, EVANGELISTA G, CORDERO S, et al. Design flood hydrographs: A regional analysis based on flood reduction functions[J]. Hydrological Sciences Journal, 2023, 68(2): 325–340. doi: 10.1080/02626667.2022.2153051.
    [15] TUFANO R, GUERRIERO L, ANNIBALI CORONA M, et al. Multiscenario flood hazard assessment using probabilistic runoff hydrograph estimation and 2D hydrodynamic modelling[J]. Natural Hazards, 2023, 116(1): 1029–1051. doi: 10.1007/s11069-022-05710-3.
    [16] 段雪源, 付钰, 王坤. 基于VAE-WGAN的多维时间序列异常检测方法[J]. 通信学报, 2022, 43(3): 1–13. doi: 10.11959/j.issn.1000-436x.2022050.

    DUAN Xueyan, FU Yu, and WANG Kun. Multi-dimensional time series anomaly detection method based on VAE-WGAN[J]. Journal on Communications, 2022, 43(3): 1–13. doi: 10.11959/j.issn.1000-436x.2022050.
    [17] ÜNES F, DEMIRCI M, TAŞAR B, et al. Estimating dam reservoir level fluctuations using data-driven techniques[J]. Polish Journal of Environmental Studies, 2019, 28(5): 3451–3462. doi: 10.15244/pjoes/93923.
    [18] MOURA R, MENDES A, CASCALHO J, et al. Predicting flood events with streaming data: A preliminary approach with GRU and ARIMA[C]. Proceedings of the 3rd International Conference on Optimization, Learning Algorithms and Applications, Ponta Delgada, Portugal, 2024: 319–332. doi: 10.1007/978-3-031-53025-8_22.
    [19] LI Gang, LIU Zhangjun, ZHANG Jingwen, et al. Bayesian model averaging by combining deep learning models to improve lake water level prediction[J]. Science of the Total Environment, 2024, 906: 167718. doi: 10.1016/j.scitotenv.2023.167718.
    [20] SHAHABI A and TAHVILDARI N. A deep-learning model for rapid spatiotemporal prediction of coastal water levels[J]. Coastal Engineering, 2024, 190: 104504. doi: 10.1016/j.coastaleng.2024.104504.
    [21] ZAKARIA M N A, AHMED A N, MALEK M A, et al. Exploring machine learning algorithms for accurate water level forecasting in Muda river, Malaysia[J]. Heliyon, 2023, 9(7): e17689. doi: 10.1016/J.HELIYON.2023.E17689.
    [22] STEFENON S F, SEMAN L O, AQUINO L S, et al. Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants[J]. Energy, 2023, 274: 127350. doi: 10.1016/j.energy.2023.127350.
    [23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [24] STEFENON S F, SEMAN L O, DA SILVA L S A, et al. Hypertuned temporal fusion transformer for multi-horizon time series forecasting of dam level in hydroelectric power plants[J]. International Journal of Electrical Power & Energy Systems, 2024, 157: 109876. doi: 10.1016/j.ijepes.2024.109876.
    [25] KOW P Y, LIOU J Y, YANG M T, et al. Advancing climate-resilient flood mitigation: Utilizing transformer-LSTM for water level forecasting at pumping stations[J]. Science of the Total Environment, 2024, 927: 172246. doi: 10.1016/j.scitotenv.2024.172246.
    [26] GUO Shaolei, WEN Yihao, ZHANG Xianqi, et al. Monthly runoff prediction using the VMD-LSTM-Transformer hybrid model: A case study of the Miyun Reservoir in Beijing[J]. Journal of Water and Climate Change, 2023, 14(9): 3221–3236. doi: 10.2166/wcc.2023.257.
    [27] ULLAH I, ADHIKARI D, SU Xin, et al. Integration of data science with the intelligent IoT (IIoT): Current challenges and future perspectives[J]. Digital Communications and Networks, 2024. doi: 10.1016/j.dcan.2024.02.007.
    [28] ULLAH F, ULLAH S, SRIVASTAVA G, et al. IDS-INT: Intrusion detection system using transformer-based transfer learning for imbalanced network traffic[J]. Digital Communications and Networks, 2024, 10(1): 190–204. doi: 10.1016/j.dcan.2023.03.008.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  29
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-11
  • 修回日期:  2025-04-02
  • 网络出版日期:  2025-04-21

目录

    /

    返回文章
    返回