Advanced Search
Volume 41 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
Mu ZHOU, Yanmeng WANG, Hui YUAN, Zengshan TIAN. Mann-Whitney Rank Sum Test Based Wireless Local Area Network Indoor Mapping and Localization Approach[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1555-1564. doi: 10.11999/JEIT180392
Citation: Mu ZHOU, Yanmeng WANG, Hui YUAN, Zengshan TIAN. Mann-Whitney Rank Sum Test Based Wireless Local Area Network Indoor Mapping and Localization Approach[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1555-1564. doi: 10.11999/JEIT180392

Mann-Whitney Rank Sum Test Based Wireless Local Area Network Indoor Mapping and Localization Approach

doi: 10.11999/JEIT180392
Funds:  The National Natural Science Foundation of China (61771083, 61704015), The Postgraduate Scientific Research and Innovation Project of Chongqing (CYS17221, CYS18240), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Fundamental and Frontier Research Project of Chongqing (cstc2017jcyjAX0380, cstc2015jcyjBX0065), The University Outstanding Achievement Transformation Project of Chongqing (KJZH17117)
  • Received Date: 2018-04-26
  • Rev Recd Date: 2019-03-08
  • Available Online: 2019-03-28
  • Publish Date: 2019-07-01
  • The Mann-Whitney rank sum test based Wireless Local Area Network (WLAN) indoor mapping and localization approach is proposed. Firstly, according to the localization accuracy requirement, this approach performs the motion paths segmentation in target area, and meanwhile merges the similar motion path segments based on the Mann-Whitney rank sum test. Then, a signal clustering algorithm based on the similar Received Signal Strength (RSS) sequence segments is adopted to guarantee the physical adjacency of the RSS samples in the same cluster. Finally, the backbone nodes based diffusion mapping is used to construct the mapping relations between the physical and signal spaces, and the motion user localization is consequently achieved. The experimental results indicate that compared with the existing WLAN indoor mapping and localization approaches, the proposed one is able to achieve higher mapping and localization accuracy without motion sensor assistance or location fingerprint database construction.
  • loading
  • WANG Xuyu, GAO Lingjun, and MAO Shiwen. Phasefi: Phase fingerprinting for indoor localization with a deep learning approach[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–6.
    RADU V, LI Jiwei, KRIARA L, et al. Poster: A hybrid approach for indoor mobile phone localization[C]. Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, Low Wood Bay, UK, 2012: 527–528. doi: 10.1145/2307636.2307717.
    YAELI A, BAK P, FEIGENBLAT G, et al. Understanding customer behavior using indoor location analysis and visualization[J]. IBM Journal of Research and Development, 2014, 58(5/6): 3:1–3:12. doi: 10.1147/JRD.2014.2337552
    BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. Proceedings of IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000: 775–784. doi: 10.1109/INFCOM.2000.832252.
    YOUSSEF M and AGRAWALA A. The Horus WLAN location determination system[C]. The 3rd International Conference on Mobile Systems, Applications, and Services, Seattle, USA, 2015: 205–218.
    KOWEERAWONG C, WIPUSITWARAKUN K, and KAEMARUNGSI K. Indoor localization improvement via adaptive RSS fingerprinting database[C]. 2013 International Conference on Information Networking, Bangkok, Thailand, 2013: 412–416. doi: 10.1109/ICOIN.2013.6496414.
    DURRANT-WHYTE H and BAILEY T. Simultaneous localization and mapping: Part I[J]. IEEE Robotics & Automation Magazine, 2006, 13(2): 99–110. doi: 10.1109/MRA.2006.1638022
    WU Chenshu, YANG Zheng, LIU Yunhao, et al. WILL: Wireless indoor localization without site survey[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(4): 839–848. doi: 10.1109/TPDS.2012.179
    WU Chenshu, YANG Zheng, LIU Yunhao, et al. WILL: Wireless indoor localization without site survey[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 64–72. doi: 10.1109/INFCOM.2012.6195809.
    LI Chao, JIANG Zhuqing, HUANG Chengkai, et al. A smartphone-based indoor positioning system using fuzzy theory and WLAN mapping algorithm[C]. 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Hong Kong, China, 2015: 2177–2181. doi: 10.1109/PIMRC.2015.7343658.
    NAIK K K and PRASAD M N G. A system for locating users of WLAN using dynamic mapping in indoor and outdoor environment-LOIDS[C]. 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 2008: 156–160. doi: 10.1109/ICCITECHN.2008.4802971.
    SHIN H, CHON Y, and CHA H. Unsupervised construction of an indoor floor plan using a smartphone[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(6): 889–898. doi: 10.1109/TSMCC.2011.2169403
    HARDEGGER M, ROGGEN D, MAZILU S, et al. ActionSLAM: Using location-related actions as landmarks in pedestrian SLAM[C]. 2012 International Conference on Indoor Positioning and Indoor Navigation, Sydney, Australia, 2012: 1–10. doi: 10.1109/IPIN.2012.6418932.
    BRUNO L and ROBERTSON P. WiSLAM: Improving footSLAM with WiFi[C]. 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 2011: 1–10. doi: 10.1109/IPIN.2011.6071916.
    MIROWSKI P, HO T K, YI S, et al. SignalSLAM: Simultaneous localization and mapping with mixed WiFi, Bluetooth, LTE and magnetic signals[C]. International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 2013: 1–10. doi: 10.1109/IPIN.2013.6817853.
    ZHANG Xiuming, JIN Yunye, TAN H X, et al. CIMLoc: A crowdsourcing indoor digital map construction system for localization[C]. IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Singapore, 2014: 1–6. doi: 10.1109/ISSNIP.2014.6827640.
    ZHOU Mu, ZHANG Qiao, WANG Yu, et al. Hotspot ranking based indoor mapping and mobility analysis using crowdsourced Wi-Fi signal[J]. IEEE Access, 2017, 5: 3594–3602. doi: 10.1109/ACCESS.2017.2674798
    ZHOU Mu, ZHANG Qiao, TIAN Zengshan, et al. Indoor WLAN localization using high-dimensional manifold alignment with limited calibration load[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997042.
    WANG Lin, LIU Wenyuan, JING Nan, et al. Simultaneous navigation and pathway mapping with participating sensing[J]. Wireless Networks, 2015, 21(8): 2727–2745. doi: 10.1007/s11276-015-0944-x
    MUTHUKRISHNAN K, VAN DER ZWAAG B J, and HAVINGA P. Inferring motion and location using WLAN RSSI[C]. Proceedings of the 2nd International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments, Orlando, USA, 2009: 163–182.
    SHIN H and CHA H. Wi-Fi fingerprint-based topological map building for indoor user tracking[C]. 2010 IEEE 16th International Conference on Embedded and Real-Time Computing Systems and Applications, Macau, China, 2010: 105–113. doi: 10.1109/RTCSA.2010.23.
    HART P E, NILSSON N J, and RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100–107. doi: 10.1109/TSSC.1968.300136
    YU Jie, AMORES J, SEBE N, et al. Distance learning for similarity estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 451–462. doi: 10.1109/TPAMI.2007.70714
    MANN H B and WHITNEY D R. On a test of whether one of two random variables is stochastically larger than the other[J]. The Annals of Mathematical Statistics, 1947, 18(1): 50–60. doi: 10.1214/aoms/1177730491
    吴喜之, 赵博娟. 非参数统计[M]. 第4版, 北京: 中国统计出版社, 2013: 52–56.

    WU Xizhi and ZHAO Bojuan. Nonparametric Test[M]. 4th ed., Beijing: China Statistics Press, 2013: 52–56.
    王星, 褚挺进. 非参数统计[M]. 第2版, 北京: 清华大学出版社, 2014: 332–334.

    WANG Xing and CHU Tingjin. Non-Parametric Statistics[M]. 2nd ed., Beijing: Tsinghua University Press, 2014: 332–334.
    HATA M. Empirical formula for propagation loss in land mobile radio services[J]. IEEE Transactions on Vehicular Technology, 1980, 29(3): 317–325. doi: 10.1109/T-VT.1980.23859
    RIRI P C, KRISTALINA P, and SUDARSONO A. Cluster-based pathloss exponential modeling for indoor positioning in wireless sensor network[C]. 2016 International Conference on Knowledge Creation and Intelligent Computing, Manado, Indonesia, 2016: 53–59. doi: 10.1109/KCIC.2016.7883625.
    ZHOU Mu, ZHANG Qiao, TIAN Zengshan, et al. IMLours: Indoor mapping and localization using time-stamped WLAN received signal strength[C]. 2015 IEEE Wireless Communications and Networking Conference, New Orleans, USA, 2015: 1817–1822.
    刘东海, 陆丽宇. 小概率事件与实际问题例谈[J]. 科技经济导刊, 2018, 26(12): 114.

    LIU Donghai and LU Liyu. Small probability events and examples of practical problems[J]. Technology and Economic Guide, 2018, 26(12): 114.
    肖莉. 基于路径损耗的WiFi室内定位系统[D]. [硕士论文], 西安电子科技大学, 2017: 19–31.

    XIAO Li. The WiFi indoor positioning system based on path loss model[D]. [Master dissertation], Xidian University, 2017: 19–31.
    张文君, 顾行发, 陈良富, 等. 基于均值-标准差的K均值初始聚类中心选取算法[J]. 遥感学报, 2006, 10(5): 715–721. doi: 10.3321/j.issn:1007-4619.2006.05.017

    ZHANG Wenjun, GU Xingfa, CHEN Liangfu, et al. An algorithm for initilizing of K-means clustering based on mean-standard deviation[J]. Journal of Remote Sensing, 2006, 10(5): 715–721. doi: 10.3321/j.issn:1007-4619.2006.05.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (1884) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return