[1] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114
[2] LI Zheng, TAI Ning, WANG Chao, et al. A study on blanket noise jamming to LFM pulse compression radar[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 2017: 1–5. doi: 10.1109/ICSPCC.2017.8242411.
[3] WU Xiaohuan, ZHU Weiping, and YAN Jun. A fast gridless covariance matrix reconstruction method for one- and two-dimensional direction-of-arrival estimation[J]. IEEE Sensors Journal, 2017, 17(15): 4916–4927. doi: 10.1109/JSEN.2017.2709329
[4] 贾伟娜, 刘顺兰. 模拟退火遗传算法在DOA估计技术中的应用[J]. 计算机工程与应用, 2014, 50(12): 266–270. doi: 10.3778/j.issn.1002-8331.1206-0247

JIA Weina and LIU Shunlan. Application of simulated annealing genetic algorithm in DOA estimation technique[J]. Computer Engineering and Applications, 2014, 50(12): 266–270. doi: 10.3778/j.issn.1002-8331.1206-0247
[5] ZHANG T T, LU Y L, and HUI H T. Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1215–1221. doi: 10.1109/TAES.2008.4655375
[6] WAN Liangtian, HAN Guangjie, JIANG Jinfang, et al. DOA estimation for coherently distributed sources considering circular and noncircular signals in massive MIMO systems[J]. IEEE Systems Journal, 2017, 11(1): 41–49. doi: 10.1109/JSYST.2015.2445052
[7] 蔡晶晶, 宗汝, 蔡辉. 基于空域平滑稀疏重构的DOA估计算法[J]. 电子与信息学报, 2016, 38(1): 168–173. doi: 10.11999/JEIT150538

CAI Jingjing, ZONG Ru, and CAI Hui. DOA estimation via sparse representation of the smoothed array covariance matrix[J]. Journal of Electronics &Information Technology, 2016, 38(1): 168–173. doi: 10.11999/JEIT150538
[8] AL-SHOUKAIRI M, SCHNITER P, and RAO B D. A GAMP-based low complexity sparse Bayesian learning algorithm[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 294–308. doi: 10.1109/TSP.2017.2764855
[9] HOU Huijun and MAO Xingpeng. Oblique projection and sparse reconstruction based DOA estimation of hybrid completely and partially polarized signals with arbitrary polarimetric arrays[C]. Proceedings of the 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, Canada, 2017: 1–4. doi: 10.1109/CCECE.2017.7946799.
[10] ZHEN Jiaqi and WANG Zhifang. DOA estimation method for wideband signals by sparse recovery in frequency domain[J]. Journal of Systems Engineering and Electronics, 2017, 28(5): 871–878. doi: 10.21629/JSEE.2017.05.06
[11] WANG Yi, CHEN Baixiao, ZHENG Yisong, et al. Joint power distribution and direction of arrival estimation for wideband signals using sparse Bayesian learning[J]. IET Radar, Sonar & Navigation, 2017, 11(1): 52–59. doi: 10.1049/iet-rsn.2015.0610
[12] 王洪雁, 房云飞, 裴炳南. 基于矩阵补全的二阶统计量重构DOA估计方法[J]. 电子与信息学报, 2018, 40(6): 1383–1389. doi: 10.11999/JEIT170826

WANG Hongyan, FANG Yunfei, and PEI Bingnan. Matrix completion based second order statistic reconstruction DOA estimation method[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1383–1389. doi: 10.11999/JEIT170826
[13] ZHANG Zhilin and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912–926. doi: 10.1109/JSTSP.2011.2159773
[14] WANG Lu, ZHAO Lifan, RAHARDJA S, et al. Alternative to extended block sparse Bayesian learning and its relation to pattern-coupled sparse Bayesian learning[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2759–2771. doi: 10.1109/TSP.2018.2816574
[15] HUANG Qinghua, ZHANG Guangfei, and FANG Yong. DOA estimation using block variational sparse Bayesian learning[J]. Chinese Journal of Electronics, 2017, 26(4): 768–772. doi: 10.1049/cje.2017.04.004
[16] 宫健, 楼顺天, 张伟涛. 一种强干扰条件下阵列天线波达方向估计方法[J]. 西安电子科技大学学报: 自然科学版, 2018, 45(1): 168–172. doi: 10.3969/j.issn.1001-2400.2018.01.030

GONG Jian, LOU Shuntian, and ZAHNG Weitao. Method of array antenna DOA under strong interference presence[J]. Journal of Xidian University, 2018, 45(1): 168–172. doi: 10.3969/j.issn.1001-2400.2018.01.030
[17] MA Jiazhi, SHI Longfei, LI Yongzhen, et al. Angle estimation of extended targets in main-lobe interference with polarization filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 169–189. doi: 10.1109/TAES.2017.2649783
[18] NATHANSON F E. Adaptive circular polarization[C]. IEEE International Radar Conference, Arlington, USA, 1975: 221–225.
[19] 王雪松, 汪连栋, 肖顺平, 等. 自适应极化滤波器的理论性能分析[J]. 电子学报, 2004, 32(8): 1326–1329. doi: 10.3321/j.issn:0372-2112.2004.08.023

WANG Xuesong, WANG Liandong, XIAO Shunping, et al. Theoretical performance analysis of adaptive polarization filters[J]. Acta Electronica Sinica, 2004, 32(8): 1326–1329. doi: 10.3321/j.issn:0372-2112.2004.08.023
[20] 任博, 罗笑冰, 邓方刚, 等. 应用极化聚类中心设计快速自适应极化滤波器[J]. 国防科技大学学报, 2015, 37(4): 87–92. doi: 10.11887/j.cn.201504015

REN Bo, LUO Xiaobing, DENG Fanggang, et al. Design of fast adaptive polarization filters utilizing polarizing cluster center[J]. Journal of National University of Defense Technology, 2015, 37(4): 87–92. doi: 10.11887/j.cn.201504015