图共 2个 表共 4
    • 图  1  噪声图像中不同位置处2个图块中心像素点ROLD统计值比较

      Figure 1. 

    • 图  2  引入EF特征对噪声检测效果的影响比较

      Figure 2. 

    • 图块阶数m
      123456789101112
      a11.633.294.996.688.3710.0911.8013.5215.2416.9818.7220.46
      b11.002.203.665.126.848.6210.5012.4414.4016.4018.4220.45

      表 1  图1中a1和b1图块上所提取的前m阶ROLD值比较

    • 方法含噪20%含噪40%含噪60%
      漏检数误检数错检总数MEMH漏检数误检数错检总数MEMH漏检数误检数错检总数MEMH
      ASWM3462106871414914.237478100051748316.401472098042452423.17
      PSMF1069535851427915.142303836032664130.273909656344473045.81
      ROLD-EPR656751061167318.77946289561841915.9510417116162203414.04
      ROR-NLM506893541442114.911190688732077917.1322553128563540823.60
      MLP-EPR850520811058622.781324457591900318.0915017101132513016.18
      本文方法40845909999211.77797585861656112.1710076125942267011.53

      表 2  各噪声检测算法在常用图像集合上的各项性能指标的平均值比较

    • 方法含噪20%含噪40%含噪50%含噪60%
      LenaHouseBridgeLenaHouseBridgeLenaHouseBridgeLenaHouseBridge
      ASWM39.0633.3125.7634.2731.2124.3330.6628.8123.2526.0426.1321.61
      PSMF30.2427.8223.2529.2626.0322.7726.0324.0921.9122.0421.9820.00
      ROLD-EPR34.7733.3126.7531.7731.2124.2530.5428.8123.1228.7826.1322.20
      ROR-NLM36.9428.9225.2831.5828.9123.5927.6127.3922.3522.9224.6820.39
      MLP--EPR36.4539.3627.7133.8337.4924.4031.8636.4823.3329.4233.9622.25
      本文方法40.3542.9526.9735.8940.3124.9133.0438.2723.3629.6636.1222.18

      表 3  各检测算法统一用相同修复算法降噪后在PSNR指标上的比较(dB)

    • 方法ASWMPSMFROLD-EPRROR-NLMMLP-EPR本文方法
      时间102.720.8610.4077.190.790.70

      表 4  各噪声检测算法平均执行时间的比较(s)