| [1] | FARAHBAKHSH E, KOZEGAR E, and SORYANI M. Improving Persian digit recognition by combining data augmentation and AlexNet[C]. Iranian Conference on Machine Vision and Image Processing, Isfahan, Iran, 2017: 265–270. |
| [2] | HOU Saihui, LIU Xu, and WANG Zilei. DualNet: Learn complementary features for image recognition[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 502–510. |
| [3] | SZEGEDY C, LIU Wei, JIA Yangqing, et al.. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. |
| [4] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al.. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. |
| [5] | 王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7(4): 395–411. doi: 10.12000/JR18040 WANG Jun, ZHENG Tong, LEI Peng, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7(4): 395–411. doi: 10.12000/JR18040 |
| [6] | PUNJABI A and KATSAGGELOS A K. Visualization of feature evolution during convolutional neural network training[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017: 311–315. |
| [7] | ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833. |
| [8] | ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al.. Learning deep features for discriminative localization[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2921–2929. |
| [9] | SUZUKI S and SHOUNO H. A study on visual interpretation of network in network[C]. 2017 International Joint Conference on Neural Networks, Anchorage, USA, 2017: 903–910. |
| [10] | GAL Y and GHAHRAMANI Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[C]. The 33rd International Conference on Machine Learning, New York, USA, 2016: 1050–1059. |
| [11] | NAIR V and HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]. The 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 2010: 807–814. |
| [12] | PEHLEVAN C and CHKLOVSKII D B. A normative theory of adaptive dimensionality reduction in neural networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2269–2277. |
| [13] | IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456. |
| [14] | 王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195–203. doi: 10.12000/JR17009 WANG Siyu, GAO Xin, SUN Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195–203. doi: 10.12000/JR17009 |
| [15] | NOH H, HONG S, and HAN B. Learning deconvolution network for semantic segmentation[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1520–1528. |